# Test if the estimation of the variance of the random effects corresponds between
# the sae package and the fh function for reml and ml estimation up to a specific
# level
# Get the benchmark results
benchmark <- read.csv("sae_estimsigma.csv")
# Get data for the comparison
data(eusilcA_smpAgg)
data(eusilcA_popAgg)
# Combine the data sets
combined_data <- combine_data(pop_data = eusilcA_popAgg, pop_domains = "Domain",
smp_data = eusilcA_smpAgg, smp_domains = "Domain",
vardir = NULL)
combined_data <- combined_data[!is.na(combined_data$Mean),]
test_that("Does the FH_eblup function return the same point and mse estimates like package sae?", {
# Estimation with FH_eblup function
fh_test <- fh(fixed = Mean ~ eqsize + cash, vardir = "Var_Mean",
combined_data = combined_data, domains = "idD",
method = "reml", interval = c(0, 2800000), transformation = "no")
# Compare point estimates from FH_AK and benchmark
expect_equal((fh_test$sigmau2 - benchmark$REML)/benchmark$REML < 1.2e-06,
TRUE)
expect_equal((fh_test$sigmau2 - benchmark$REML)/benchmark$REML < 1.2e-06,
TRUE)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.