The evaluation is based on a comparison of the number of cut and uncut reads in the sites of methyl sensitive restrictases.
You can install RMetSeq from GitHub using devtools:
# Install devtools if not already installed
install.packages("devtools")
library(devtools)
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("bamsignals")
BiocManager::install("GenomicRanges")
BiocManager::install("Biostrings")
# Install RMetSeq
install_github("alekseizarubin/RMetSeq")
# Load RMetSeq and other necessary libraries
library("RMetSeq")
library(GenomicAlignments)
library(Rsamtools)
library(bamsignals)
library(msgbsR)
#Selection of coordinates of restriction sites
genome<- readDNAStringSet(filepath = "path/genome.fa",format = "fasta")
Coordinates_CCGG<-vmatchPattern("CCGG", genome,
max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE,
algorithm="auto")
Coordinates_CCGG<-GRanges(Coordinates_CCGG,strand = "*")
start(Coordinates_CCGG)<-start(Coordinates_CCGG)+1
end(Coordinates_CCGG)<-end(Coordinates_CCGG)-1
bamFiles<-dir("path_bam/",pattern = ".bam",full.names = T)
#Exclusion of restriction sites with insufficient coverage
GR<-GRCovFiltration(bamFiles, Coordinates_CCGG, tread = 20, mincov = 20, minSample = 1, duplicate = T)
#Estimation of the level of methylation
RMetSeq(bamFiles, GR, tread = 1, duplicate = T)
# Or in methylKit format
metKitExport(bamFiles, GR, mincov = 30, save_dir = "./", duplicate = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.