Description Usage Arguments Details Value References See Also Examples
Estimation of a Cobb-Douglas production frontier from sample data.
1 | CobbDouglas(y.name, x.names=NULL, data, beta.sum=NULL, beta.min=0)
|
y.name |
The name of the output variable. |
x.names |
The names of the input variables. If |
data |
A data.frame containing the output and the input variables. |
beta.sum |
Constraint on the sum of beta parameters. If |
beta.min |
Constraint on the minimum of each beta parameter. Default is 0. |
Consider a sample of n production units, for which the quantity of the output Y and of H input variables X_1,…,X_H is measured. Let y_i be the quantity of the output for unit i, and x_{hi} be the quantity of the h-th input for unit i. A Cobb-Douglas production frontier is defined as:
y^*_i = τ∏_{h=1}^H x_{hi}^{β_h}
where y^*_i is the maximum producible output for unit i, τ>0 is a parameter representing the total factor productivity for a technically efficient unit, and β_h≥q 0 (h=1,…,H) is a parameter representing the elasticity of the output with respect to the h-th input. Note that the Cobb-Douglas production frontier is linear on the logarithmic scale:
\log y^*_i = \logτ+∑_{h=1}^H β_h \log x_{hi}
Constant returns to scale hold if ∑_{h=1}^H β_h=1, and they can be obtained by setting the argument beta.sum
to value 1.
Instead, ∑_{h=1}^H β_h<1 implies decreasing returns to scale, while
∑_{h=1}^H β_h>1 implies increasing returns to scale.
Estimation of the Cobb-Douglas production frontier is performed through constrained least squares on the logarithmic scale:
(\hat{τ},\hat{β}_1,…,\hat{β}_H)=\code{argmin}_{τ,β_1,…,β_H}∑_{i=1}^n(\log y_i-\log y^*_i)^2=
=\code{argmin}_{τ,β_1,…,β_H}∑_{i=1}^n(\log y_i-\logτ-∑_{h=1}^H β_h \log x_{hi})^2
subjected to:
\log y^*_i ≥q \log y_i \hspace{.7cm} i=1,…,n
β_h ≥q 0 \hspace{.7cm} h=1,…,H
S3 methods available for class CobbDouglas
are:
print
: to get essential information.
summary
: to get summaries of estimation.
plot
: to display the estimated frontier. See plot.CobbDouglas.
predict
: to predict the maximum producible output or technical efficiency. See predict.CobbDouglas.
Also, the method CobbDouglas_boot is available to approximate confidence intervals for parameters and technical efficiencies.
An object of class CobbDouglas
, that is a list with the following components:
|
Parameter estimates. |
|
Output-side ( |
|
Fitted values, equal to the logarithm of the maximum producible output for each unit. |
|
Residuals, equal to the logarithm of output-side technical efficiencies. |
|
Value passed to argument |
|
Value passed to argument |
|
Value passed to argument |
|
Value passed to argument |
|
Data used in the estimation. |
C. W. Cobb and P. H. Douglas (1928). A Theory of Production. American Economic Review, 18: 139-165.
plot.CobbDouglas; predict.CobbDouglas; CobbDouglas_boot.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | data(production)
### one input variable: 'labour'
m1 <- CobbDouglas("output", "labour", data=production)
summary(m1)
# plot the estimated frontier
plot(m1, cex.axis=1.1, cex.lab=1.2)
# technical efficiencies
m1_eff <- m1$efficiency
## NOT RUN:
# m1_eff
# efficient units
m1_eff[which(m1_eff$y.side==1),]
# setting beta=1 (constant returns to scale) seems to fit worse
m1c <- CobbDouglas("output", "labour", data=production, beta.sum=1)
m1c$parameters
m1c$efficiency[which(m1c$efficiency$y.side==1),]
plot(m1c, cex.axis=1.1, cex.lab=1.2, main="beta = 1", cex.main=1.6)
### two input variables: 'labour' and 'capital'
# no constraints on the sum of beta parameters
m2 <- CobbDouglas("output", c("labour","capital"), data=production)
summary(m2)
m2$efficiency[which(m2$efficiency$y.side==1),]
# beta.sum=1 (constant returns to scale)
m2c <- CobbDouglas("output", c("labour","capital"), data=production, beta.sum=1)
summary(m2c)
m2c$efficiency[which(m2c$efficiency$y.side==1),]
# beta.sum=0.7 (decreasing returns to scale)
m2d <- CobbDouglas("output", c("labour","capital"), data=production, beta.sum=0.7)
summary(m2d)
m2d$efficiency[which(m2d$efficiency$y.side==1),]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.