Description Usage Arguments Details Value References See Also Examples
Boostrap resampling to approximate confidence intervals for parameters and technical efficiencies of a Cobb-Douglas production frontier.
1 | CobbDouglas_boot(x, nboot=500, conf=0.95)
|
x |
An object of class |
nboot |
The number of bootstrap replications. It must be at least 50. |
conf |
The confidence level. Default is 0.95. |
Non-parameteric bootstrap resampling is performed (Efron, 1979) and bias-corrected boostrap confidence intervals are computed (Efron, 1987).
An object of class CobbDouglas_boot
, that is a list with three components: parameters
, y.side
and x.side
. Each component is a data.frame containing the estimated value, the estimated standard error and the bootstrap confidence interval at level conf
for each parameter (component parameters
), output-side technical efficiencies (component y.side
) and input-side technical efficiencies (component x.side
).
B. Efron (1987). Better Bootstrap Confidence Intervals. Journal of the American Statistical Association, 82(397): 171-185.
B. Efron (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1): 1-26.
CobbDouglas.
1 2 3 4 5 6 7 8 9 10 11 12 13 | data(production)
m2 <- CobbDouglas("output", c("labour","capital"), data=production)
set.seed(123)
CobbDouglas_boot(m2, nboot=150)
m2c <- CobbDouglas("output", c("labour","capital"), data=production, beta.sum=1)
set.seed(123)
CobbDouglas_boot(m2c, nboot=150)
m2d <- CobbDouglas("output", c("labour","capital"), data=production, beta.sum=0.7)
set.seed(123)
CobbDouglas_boot(m2d, nboot=150)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.