Description Usage Arguments Value Examples
mape_poisson
1 | mape_poisson(df, a_prior, b_prior)
|
df |
data.frame object, containing at least column named 'x' containing non-negative integer values. |
a_prior |
positive numeric, giving prior parameter 'a', assuming Poisson parameter L ~ beta(a, b). |
b_prior |
positive numeric, giving prior parameter 'b', assuming Poisson parameter L ~ beta(a, b). |
numeric, maximum a-posteriori estimate (MAPE) of Poisson parameter L, assuming df$x ~ poisson(L), and L ~ beta(a, b).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # Generate example data:
set.seed(31)
L = 5
# Number of experiments, i.e. rows in df:
numexps = 10
# Filling df with pseudo data; note the requisite column 'x':
df = data.frame('x' = rpois(numexps, L))
# Generating maximum a posteriori estimate (MAPE) solution for L:
L_fit = mape_poisson(df = df, a_prior = 1, b_prior = 1)
# Compare fitted values to known values:
cbind(L, L_fit)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.