Description Usage Arguments Value Examples
View source: R/posterior_beta_negbinomial.R
posterior_beta_negbinomial
1 2 3 4 5 6 7 |
df |
data.frame object, containing at least columns named 'x' containing non-negative integer values and 'g' containing group labels. |
rab_prior |
length-3, positive numeric vector specifying prior hyperparameter values for r, a, and b; if NULL, values fit by empirical Bayes (EMPB). |
dist |
string specifying what type of samples to return: either 'post' (for samples from the posterior distribution), or 'pred' (for samples from the posterior-predictive distribution). |
Nsamp |
positive integer, number of samples to generate per group. |
... |
optional parameters to be passed to control EMPB convergence, in the case 'rab_prior' is NULL; see 'empb_gamma_poisson'. |
matrix of samples from the posterior (or posterior-predictive) distribution, where (named) columns are for group IDs included in df$g, and rows are samples; assuming df$x ~ nbinom(r, p_g), and p_g ~ beta(a, b), where 'p_g' denotes a group-level parameter.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # Generate example data:
set.seed(31)
r = 4
a = 3
b = 9
# Number of groups:
NG = 10
# Creating group IDs:
g = replicate(NG, paste(sample(LETTERS, 10), sep="", collapse=""))
# Generating 'true' p parameters:
p = rbeta(length(g), a, b)
# Number of experiments, i.e. rows in df:
numexps = 100
# Filling df with pseudo data; note the requisite columns 'x' and 'g':
df = data.frame('x' = numeric(0), 'g' = character(0))
for(k in 1:numexps){
gk = sample(g, 1)
xk = rnbinom(1, r, p[g == gk])
df = rbind(df, data.frame('x' = xk, 'g' = gk))
}
# Generating 1000 posterior distribution samples for each group:
posterior_values = posterior_beta_negbinomial(df = df, method = 'gdescent')
dim(posterior_values)
# Create histogram of posterior distribution samples for first group (by alphabetic order):
hist(posterior_values[, 1], main = colnames(posterior_values)[1])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.