## File Name: mdmb_regression_summary.R
## File Version: 0.481
#*******************************************************
# Summary for logistic_regression object
mdmb_regression_summary <- function( object, digits=4, file=NULL, ...)
{
type <- object$type
# open sink
CDM::osink( file=file, suffix=paste0( '__SUMMARY.Rout') )
cat('-----------------------------------------------------------------\n')
# package and R session
mdmb_summary_print_model_description(object=object, pack='mdmb')
cat( object$description, '\n\n')
cat('-----------------------------------------------------------------\n')
cat( 'Optimizer','=', object$optimizer, '\n' )
cat( 'Converged','=', object$converged, '\n' )
cat( 'Convergence code','=', object$convergence_code, '\n' )
cat('\n')
cat( 'Number of observations','=', object$ic$n, '\n' )
cat( 'Number of iterations','=', object$iter, '\n\n' )
cat( 'Deviance','=', round( object$ic$deviance, 2 ), '\n' )
cat( 'Log likelihood','=', round( object$loglike, 2 ), '\n' )
cat( 'Log prior','=', round( object$logprior, 2 ), '\n' )
cat( 'Log posterior','=', round( object$logpost, 2 ), '\n' )
cat('\n')
cat( 'Number of estimated parameters','=', object$ic$np, '\n' )
cat( ' Number of estimated beta parameters','=', object$ic$np.beta, '\n' )
cat( ' Number of estimated sigma parameters','=', object$ic$np.sigma, '\n' )
cat( ' Number of estimated lambda parameters','=', object$ic$np.lambda, '\n' )
cat( ' Number of estimated df parameters','=', object$ic$np.df, '\n' )
cat( ' Number of estimated threshold parameters','=', object$ic$np.thresh, '\n' )
cat('\n')
cat( 'AIC','=', round( object$ic$AIC, 2 ), ' | penalty','=',
round( object$ic$AIC - object$ic$deviance,2 ),
' | AIC=-2*LL + 2*p \n' )
cat( 'AICc','=', round( object$ic$AICc, 2 ),' | penalty','=',
round( object$ic$AICc - object$ic$deviance,2 ) )
cat(' | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)\n' )
cat( 'BIC','=', round( object$ic$BIC, 2 ), ' | penalty','=',
round( object$ic$BIC - object$ic$deviance,2 ),
' | BIC=-2*LL + log(n)*p \n' )
cat( 'CAIC','=', round( object$ic$CAIC, 2 ),' | penalty','=',
round( object$ic$CAIC - object$ic$deviance,2 ) )
cat(' | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)\n\n' )
cat('-----------------------------------------------------------------\n')
cat('Estimated Parameters\n')
obji <- object$partable
CDM::cdm_print_summary_data_frame(obji, digits=digits, from=2)
cat('\n')
#*** print thresholds
if (type %in% c('oprobit') ){
cat('-----------------------------------------------------------------\n')
cat('Threshold Parameters\n')
print( round( object$thresh, digits ) )
cat('\n')
}
#-----------------------------------------
# Explained Variance
#*** logistic regression
if (type %in% c('logistic', 'oprobit') ){
cat('Pseudo R-Square (McKelvey & Zavoina)','=',
round( object$R2, digits ), '\n' )
}
#*** yjt and bct regression
if (type %in% c('yjt','bct') ){
cat('R2','=', round( object$R2, digits ), '\n' )
}
# close sink
CDM::csink( file=file )
}
#*******************************************************
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.