View source: R/the_mode_jumping_package5.r View source: R/the_mode_jumping_package4.r View source: R/the_mode_jumping_package4.0.r View source: R/the_mode_jumping_package3.r View source: R/the_mode_jumping_package2.r View source: R/the_mode_jumping_package2.0.r
estimate.bigm | R Documentation |
estimate.bigm(formula, data, family, prior, maxit = 2,chunksize = 1000000)
formula |
a formula object for the model to be addressed |
data |
a data frame object containing variables and observations corresponding to the formula used |
family |
distribution family foe the responces |
prior |
either "AIC" or "BIC" |
maxit |
maximum number of Fisher scoring iterations |
chunksize |
size of chunks for processng the data frame |
a list of
mlik |
marginal likelihood of the model |
waic |
AIC model selection criterion |
dic |
BIC model selection criterion |
summary.fixed$mean |
a vector of posterior modes of the parameters |
n |
sample size |
biglm::bigglm
library(RCurl)
X4= as.data.frame(array(data = rbinom(n = 50*1000,size = 1,prob = runif(n = 50*1000,0,1)),dim = c(1000,50)))
Y4=rnorm(n = 1000,mean = 1+7*(X4$V4*X4$V17*X4$V30*X4$V10)+7*(((X4$V50*X4$V19*X4$V13*X4$V11)>0)) + 9*(X4$V37*X4$V20*X4$V12)+ 7*(X4$V1*X4$V27*X4$V3)
+3.5*(X4$V9*X4$V2) + 6.6*(X4$V21*X4$V18) + 1.5*X4$V7 + 1.5*X4$V8,sd = 1)
X4$Y4=Y4
data.example = as.data.frame(X4)
formula1 = as.formula(paste(colnames(X4)[51],"~ 1 +",paste0(colnames(X4)[-c(51)],collapse = "+")))
formula1 = as.formula(paste(colnames(data.example)[1],"~ 1 +",paste0(colnames(data.example)[-1],collapse = "+")))
estimate.bigm(formula = formula1, data = data.example,n=47,prior = "BIC", maxit = 20,chunksize = 1000000, family = gaussian())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.