View source: R/the_mode_jumping_package5.r View source: R/the_mode_jumping_package5.r View source: R/the_mode_jumping_package4.r View source: R/the_mode_jumping_package4.r View source: R/the_mode_jumping_package4.0.r View source: R/the_mode_jumping_package4.0.r View source: R/the_mode_jumping_package3.r View source: R/the_mode_jumping_package3.r View source: R/the_mode_jumping_package2.r View source: R/the_mode_jumping_package2.r View source: R/the_mode_jumping_package2.0.r View source: R/the_mode_jumping_package2.0.r
estimate.logic.lm | R Documentation |
estimate.logic.lm(formula, data, n, m, r = 1)
formula |
a formula object for the model to be addressed |
data |
a data frame object containing variables and observations corresponding to the formula used |
n |
sample size |
m |
total number of input binary leaves |
r |
omitted |
a list of
mlik |
marginal likelihood of the model |
waic |
AIC model selection criterion |
dic |
BIC model selection criterion |
summary.fixed$mean |
a vector of posterior modes of the parameters |
BAS::bayesglm.fit, esimate.logic.glm
X4=as.data.frame(array(data = rbinom(n = 50*1000,size = 1,prob = runif(n = 50*1000,0,1)),dim = c(1000,50)))
Y4=rnorm(n = 1000,mean = 1+7*(X4$V4*X4$V17*X4$V30*X4$V10)+7*(X4$V50*X4$V19*X4$V13*X4$V11) + 9*(X4$V37*X4$V20*X4$V12)+ 7*(X4$V1*X4$V27*X4$V3)+3.5*(X4$V9*X4$V2) + 6.6*(X4$V21*X4$V18) + 1.5*X4$V7 + 1.5*X4$V8,sd = 1)
X4$Y4=Y4
formula1 = as.formula(paste(colnames(X4)[51],"~ 1 +",paste0(colnames(X4)[-c(51)],collapse = "+")))
estimate.logic.lm(formula = formula1,data = X4,n = 1000, m = 50)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.