estimate.logic.lm: Obtaining Bayesian estimators of interest from an LM model...

View source: R/the_mode_jumping_package5.r View source: R/the_mode_jumping_package5.r View source: R/the_mode_jumping_package4.r View source: R/the_mode_jumping_package4.r View source: R/the_mode_jumping_package4.0.r View source: R/the_mode_jumping_package4.0.r View source: R/the_mode_jumping_package3.r View source: R/the_mode_jumping_package3.r View source: R/the_mode_jumping_package2.r View source: R/the_mode_jumping_package2.r View source: R/the_mode_jumping_package2.0.r View source: R/the_mode_jumping_package2.0.r

estimate.logic.lmR Documentation

Obtaining Bayesian estimators of interest from an LM model for the logic regression case

Usage

estimate.logic.lm(formula, data, n, m, r = 1)

Arguments

formula

a formula object for the model to be addressed

data

a data frame object containing variables and observations corresponding to the formula used

n

sample size

m

total number of input binary leaves

r

omitted

Value

a list of

mlik

marginal likelihood of the model

waic

AIC model selection criterion

dic

BIC model selection criterion

summary.fixed$mean

a vector of posterior modes of the parameters

See Also

BAS::bayesglm.fit, esimate.logic.glm

Examples



X4=as.data.frame(array(data = rbinom(n = 50*1000,size = 1,prob = runif(n = 50*1000,0,1)),dim = c(1000,50)))
Y4=rnorm(n = 1000,mean = 1+7*(X4$V4*X4$V17*X4$V30*X4$V10)+7*(X4$V50*X4$V19*X4$V13*X4$V11) + 9*(X4$V37*X4$V20*X4$V12)+ 7*(X4$V1*X4$V27*X4$V3)+3.5*(X4$V9*X4$V2) + 6.6*(X4$V21*X4$V18) + 1.5*X4$V7 + 1.5*X4$V8,sd = 1)
X4$Y4=Y4
  
formula1 = as.formula(paste(colnames(X4)[51],"~ 1 +",paste0(colnames(X4)[-c(51)],collapse = "+")))


estimate.logic.lm(formula = formula1,data = X4,n = 1000, m = 50)


aliaksah/EMJMCMC2016 documentation built on July 27, 2023, 5:48 a.m.