blb_sampling = function(X, FUN, T, b = .6*n, iter = 100, ...){
R = c()
n = length(X[,1])
index = sample(1:n, b, replace = FALSE)
X_j = X[index,]
theta_j = FUN(X_j, ...)
for(i in 1:iter){
X_j_i = sample(X_j, n, replace = TRUE)
theta_j_i = FUN(X_j_i, ...)
T_i = T(theta_j_i, theta_j)
R = c(R, T_i)
}#end loop
return(R)
}
sdb_pal = function(X, FUN,T,subset_size, n, niter){
foreach::foreach(i = 1:niter, .combine = 'c') %dopar% {
index = sample(1:n, subset_size, replace = TRUE)
resample.index = sample(1:subset_size, n, replace = TRUE)
#Subsample and resample data
X_j <- X[index,]
X_j = cbind(X_j, c())
X_jresample <- X_j[resample.index,]
#Calculate the statistic of interest
theta_j <- FUN(X_j)
theta_resample <- FUN(X_jresample)
#Calculate the root function
T_iter <- T(theta_resample, theta_j)
}
}
timefcn = function(X, statistic, T, subset_size){
iters1 = SDBBoot(X, statistic, T, subset_size = subset_size, time_lim = 15)$iters
iters2 = SDBBoot(X, statistic, T, subset_size = subset_size, time_lim = 15)$iters
#2*iters*t(b) = time
t.b = 15/(iters1+iters2)
sd_iters = sd(iters1,iters2)
return(t.b)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.