Description Usage Arguments Examples
Predict response with a generalized supervised MF model
1 2 3 |
object |
generalized supervised MF object |
newdata |
matrix of the same exponential family as covariates in |
type |
the type of fitting required.
|
quiet |
logical; whether the calculation should show progress |
max_iters |
maximum number of iterations |
conv_criteria |
convergence criteria |
start_A |
initial value for |
... |
Additional arguments |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # construct a low rank matrices in the natural parameter space
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_np = outer(rnorm(rows), rnorm(cols))
mat_np_new = outer(rnorm(rows), loadings)
# generate a count matrices and binary responses
mat = matrix(rbinom(rows * cols, 1, c(inv.logit.mat(mat_np))), rows, cols)
mat_new = matrix(rbinom(rows * cols, 1, c(inv.logit.mat(mat_np_new))), rows, cols)
response = rbinom(rows, 1, rowSums(mat) / max(rowSums(mat)))
response_new = rbinom(rows, 1, rowSums(mat_new) / max(rowSums(mat_new)))
mod = genSupMF(mat, response, k = 2, alpha = 1000,
family_x = "poisson", family_y = "binomial", quiet = FALSE)
plot(predict(mod, type = "response"), response)
plot(predict(mod, mat_new, type = "response"), response_new)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.