## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "",
fig.width = 4,
fig.height = 4,
warning = FALSE,
message = FALSE
)
## ----setup--------------------------------------------------------------------
library(rightTruncation)
## ----simulated----------------------------------------------------------------
h_nr_simulated <- h_nr_simulate(N = 10)
h_nr_simulated
## ----likematrix---------------------------------------------------------------
MLE_res = nlm(f = negLL_Weibull_counts_matrix,
p = c(3, 15),
h_nr = h_nr_simulated)
## ----res----------------------------------------------------------------------
k_MLE <- MLE_res$estimate[1]
lambda_MLE <- MLE_res$estimate[2]
k_MLE # shape
lambda_MLE # scale
mean_using_MLEs <- lambda_MLE * gamma(1 + 1/k_MLE)
mean_using_MLEs
median_using_MLEs <- lambda_MLE * (log(2))^(1/k_MLE)
median_using_MLEs
## ----simest-------------------------------------------------------------------
h_nr_one_sim_fit(N=10)$estimate
## ---- delaydata---------------------------------------------------------------
delay_data
time_report_vec = 0:(as.numeric(max(delay_data$time_to_report)) + 2)
hist(as.numeric(delay_data$time_to_report),
breaks = time_report_vec,
right = FALSE,
xlab = "Time from symptom onset to reported case (days)",
main = "",
col = "lightgrey")
## ---- cases-------------------------------------------------------------------
plotdelay1 <- plot_time_to_report(delay_data, x_axis = "onset",
xLim = c(lubridate::ymd("2020-02-28"),
max(delay_data$reported_date) + 2))
plotdelay2 <- plot_time_to_report(delay_data,
xLim = c(lubridate::ymd("2020-02-28"),
max(delay_data$reported_date) + 2))
## ---- plots, fig.width = 8, fig.asp = 0.8-------------------------------------
gridExtra::grid.arrange(
plotdelay1,
plotdelay2,
ncol=1)
## ----convert------------------------------------------------------------------
h_nr_tibble <- make_h_nr_tibble(delay_data)
h_nr_tibble
# Show how many of each h_nr values there are:
summary(as.factor(h_nr_tibble$h_nr))
## ----MLEtibble----------------------------------------------------------------
MLE <- nlm(f = negLL_Weibull_counts_tibble,
p = c(3,15),
h_nr_tibble = h_nr_tibble)
k_MLE <- MLE$estimate[1]
lambda_MLE <- MLE$estimate[2]
k_MLE # shape
lambda_MLE # scale
mean_using_MLEs <- lambda_MLE * gamma(1 + 1/k_MLE)
mean_using_MLEs
median_using_MLEs <- lambda_MLE * (log(2))^(1/k_MLE)
median_using_MLEs
## ----May, eval=FALSE----------------------------------------------------------
# # k_MLE # shape
# # 1.655612
# # lambda_MLE # scale
# # 9.901742
# # mean_using_MLEs
# # 8.851888
# # median_using_MLEs
# # 7.935406
## ----manuscript---------------------------------------------------------------
h_nr_manuscript <- make_h_nr_tibble(delay_data,
day_0 = lubridate::ymd("2020-02-29"),
day_N = lubridate::ymd("2020-04-02"))
MLE_man <- nlm(f = negLL_Weibull_counts_tibble,
p = c(3,15),
h_nr_tibble = h_nr_manuscript)
k_MLE_man <- MLE_man$estimate[1]
lambda_MLE_man <- MLE_man$estimate[2]
k_MLE_man # shape
lambda_MLE_man # scale
mean_using_MLEs_man <- lambda_MLE_man * gamma(1 + 1/k_MLE_man)
mean_using_MLEs_man
median_using_MLEs_man <- lambda_MLE_man * (log(2))^(1/k_MLE_man)
median_using_MLEs_man
## ----MLEhist, eval=FALSE------------------------------------------------------
# png(filename = "delay-hist-BC-NZ.png",
# width = 6.8*240,
# height = 4.5*240,
# res = 240)
# max_delay <- max(c(h_nr_manuscript$r - h_nr_manuscript$n, h_NZ$breaks) + 2)
# time_report_vec = seq(0, max_delay, by=0.1)
#
# h_NZ <- readRDS(paste0(here::here(), "/data-raw/NZ_histogram.rds"))
#
# time_report_BC = dweibull(time_report_vec,
# shape = k_MLE_man,
# scale = lambda_MLE_man) * sum(h_nr_manuscript$h_nr)
# time_report_NZ = dweibull(time_report_vec,
# shape = 1.53289,
# scale = 7.818021) * sum(h_NZ$counts)
# par(mfrow=c(1,2))
# hist(rep(h_nr_manuscript$r - h_nr_manuscript$n, h_nr_manuscript$h_nr),
# breaks = 0:max_delay,
# right = FALSE,
# xlab = "Days from symptom onset to reporting",
# main = "British Columbia",
# col = "lightgrey")
# lines(time_report_vec,
# time_report_BC,
# col = "red",
# lwd = 2)
# plot(h_NZ,
# xlab = "Days from symptom onset to reporting",
# main = "New Zealand",
# col = "lightgrey")
# lines(time_report_vec,
# time_report_NZ,
# col = "red",
# lwd = 2)
# dev.off()
## ----conf, eval=TRUE----------------------------------------------------------
k_confint <- sizeSpectra::profLike(negLL_Weibull_counts_tibble,
MLE = k_MLE,
minNegLL = MLE$minimum,
vecInc = 0.001,
h_nr_tibble = h_nr_tibble,
lambda_MLE = lambda_MLE)
k_confint # In early May results were: 1.60-1.86
lambda_confint <- sizeSpectra::profLike(negLL_Weibull_counts_tibble,
MLE = lambda_MLE,
minNegLL = MLE$minimum,
vecInc = 0.001,
vecDiff = 0.65,
h_nr_tibble = h_nr_tibble,
k_MLE = k_MLE)
lambda_confint # In early May results were: 9.30-10.46
## ----NZ1----------------------------------------------------------------------
delay_data
## ----NZ2----------------------------------------------------------------------
h_nr_tibble <- make_h_nr_tibble(delay_data)
h_nr_tibble
## ----NZ3----------------------------------------------------------------------
MLE <- nlm(f = negLL_Weibull_counts_tibble,
p = c(3,15),
h_nr_tibble = h_nr_tibble)
MLE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.