#' Figure 5e
#
#' This function allows you generate figure4e - ZMIZ1 and KI67
#'
#' @keywords VIPER ER ZMIZ1
#' @examples figure4e()
#' @import ggpubr
#' @import reshape
#' @export
figure5e_ki67 <- function() {
proteinData
sum(is.na(proteinData[,'P03372'])) #0 missing ESR
sum(is.na(proteinData[,'Q9ULJ6'])) #55 missing values in ZMIZ1
sum(is.na(proteinData[,'P46013'])) #0 missing MKI67
plot(log(proteinData[,'P03372']),log(proteinData[,'P46013']), xlab="ERa", ylab="KI67")
plot(log(proteinData[,'P03372']),log(proteinData[,'Q9ULJ6']), xlab="ERa", ylab="ZMIZ1")
plot(log(proteinData[,'Q9ULJ6']),log(proteinData[,'P46013']), xlab="ZMIZ1", ylab="KI67")
library(ggpubr)
library(reshape)
df<-data.frame(id=(1:nrow(proteinData)),log(proteinData))
#dfLong<-reshape::melt(df, id="id")
dfLong<-data.frame(
rbind(
cbind("ERa-KI67", df$P03372, df$P46013),
cbind("ERa-ZMIZ1", df$P03372, df$Q9ULJ6),
cbind("KI67-ZMIZ1", df$P46013, df$Q9ULJ6)
)
)
dfLong[,2:3]<-sapply(dfLong[,2:3], as.numeric)
dfLong[,1]<-sapply(dfLong[,1], as.factor)
sapply(dfLong[2:3,], class) #check numeric/factor
colnames(dfLong)<-c('Comparison','Protein1','Protein2')
#ggscatter(df,x='P03372',y='P46013', conf.int=TRUE) +
#stat_cor(label.x = 3)
p<-ggscatter(dfLong, x='Protein1',
y='Protein2',
add="reg.line",
conf.int=TRUE,
color='Comparison',
palette="jco",
shape='Comparison'
) +
stat_cor(aes(color = Comparison), label.x = 1.5) +
xlab('Log(intensity Protein 1)') +
ylab('Log(intensity Protein 2)') +
ggtitle('ER, ZMIZ1 and KI67 Protein Abundance \n Correlates in TCGA (PXD024322)')
#pdf(file="KI76vZMIZ1_Protein.pdf", width=5, height=6)
p
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.