#' PopED - \bold{Pop}ulation (and individual) optimal \bold{E}xperimental \bold{D}esign.
#'
#' PopED computes optimal experimental designs for both
#' population and individual studies based on nonlinear mixed-effect models.
#' Often this is based on a computation of the Fisher Information Matrix (FIM).
#'
#'
#' To get started you need to define
#' \enumerate{
#' \item A model.
#' \item An initial design (and design space if you want to optimize).
#' \item The tasks to perform.
#' }
#' There are a number of functions to help you with these tasks. The user-level functions defined below are
#' meant to be run with a minimum of arguments (for beginners to advanced users). Many of the other functions in the package
#' (and not listed here) are called by these user-level functions
#' and are often not as user
#' friendly (developer level or advanced user functions).
#'
#' Define a structural model:
#' \code{\link{ff.PK.1.comp.oral.md.CL}},
#' \code{\link{ff.PK.1.comp.oral.md.KE}},
#' \code{\link{ff.PK.1.comp.oral.sd.CL}},
#' \code{\link{ff.PK.1.comp.oral.sd.KE}},
#' \code{\link{ff.PKPD.1.comp.oral.md.CL.imax}},
#' \code{\link{ff.PKPD.1.comp.sd.CL.emax}}.
#'
#' Define a residual unexplained variability model (residual error model):
#' \code{\link{feps.add.prop}},
#' \code{\link{feps.add}},
#' \code{\link{feps.prop}}.
#'
#' Create an initial study design (and design space):
#' \code{\link{create.poped.database}}.
#'
#' Evaluate the model and/or design through simulation and graphics:
#' \code{\link{plot_model_prediction}},
#' \code{\link{model_prediction}},
#' \code{\link{plot_efficiency_of_windows}}.
#'
#' Evaluate the design using the FIM:
#' \code{\link{evaluate_design}},
#' \code{\link{evaluate.fim}},
#' \code{\link{evaluate.e.ofv.fim}},
#' \code{\link{ofv_fim}},
#' \code{\link{get_rse}}.
#'
#' Optimize the design (evaluate afterwards using the above functions):
#' \code{\link{poped_optim}},
#'
#' See the "Examples" section below for a short introduction to using the above functions.
#' There are several other examples, as r-scripts, in the "examples" folder in the
#' PopED installation directory located at (run at the R command line):
#'
#' \code{system.file("examples", package="PopED")}.
#'
#' @references \enumerate{
#' \item J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended,
#' parallelized, nonlinear mixed effects models optimal design tool",
#' Computer Methods and Programs in Biomedicine, 108, 2012.
#' \item M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software for optimal
#' experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
#' \item \url{https://andrewhooker.github.io/PopED/}
#' }
#'
#'
#' @example tests/testthat/examples_fcn_doc/examples_poped-package.R
#'
#' @importFrom stats dlnorm
#' @importFrom stats dnorm
#' @importFrom stats end
#' @importFrom stats optim
#' @importFrom stats qnorm
#' @importFrom stats quantile
#' @importFrom stats rnorm
#' @importFrom stats runif
#' @importFrom utils capture.output
#' @importFrom utils find
#' @importFrom utils packageVersion
#' @importFrom utils stack
#' @importFrom magrittr "%>%"
# @importFrom rlang .data
# @importFrom devtools load_all
# @importFrom MASS write.matrix
# @importFrom mvtnorm rmvnorm
# @import ggplot2
#' @keywords internal
"_PACKAGE"
## usethis namespace: start
## usethis namespace: end
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.