Description Usage Arguments See Also Examples
Define output layer.
| 1 2 | nnlayer_output(layer, nodes, name, inputname, activation = c("sigmoid",
  "rlinear", "linear", "softmax"))
 | 
| layer | A layer object, e.g. using  | 
| nodes | Number of hidden nodes in layer. | 
| name | Name of the layer | 
| inputname | Name of the preceding layer. If  | 
| activation | Activation function, e.g.  | 
Other layer.definition.functions: nnlayer_conv,
nnlayer_full, nnlayer_input,
nnlayer_norm, nnlayer_pool
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | # Use the layer functions to generate individual layer specifications
nnlayer_input(c(13, 13))
nnlayer_input(c(3, 7, 7), name = "pixels")
# Convolution layers automatically compute the output size and padding
nnlayer_conv(NULL, c(2, 2), 
           inputshape = c(13, 13), 
           name = "conv1", 
           inputname = "pixels"
)
nnlayer_conv(NULL, 
           c(2, 2), 
           inputshape = c(13, 13), 
           name = "conv1", 
           inputname = "pixels", 
           stride = c(2, 2)
)
nnlayer_conv(NULL, 
           c(1, 2, 2), 
           inputshape = c(3, 13, 13), 
           name = "conv1", 
           inputname = "pixels", 
           stride = c(1, 2, 2)
)
nnlayer_pool(NULL, 
           c(1, 2, 2), 
           inputshape = c(3, 13, 13), 
           name = "conv1", 
           inputname = "pixels", 
           stride = c(1, 2, 2)
)
# Specify the number of nodes in a fully connected layer
nnlayer_full(NULL, nodes = 100, name = "h3", inputname = "conv")
# Output layer
nnlayer_output(NULL, 6, name = "class", inputname = "h3")
# using magrittr pipes to connect layers ----------------------------------
require(magrittr)
nnlayer_input(c(3, 50, 50), name = "pixels") %>% 
  nnlayer_conv(
    kernelshape = c(1, 5, 5),
    name = "conv1", 
    stride = c(1, 2, 3)
  )
nnlayer_input(c(3, 50, 50), name = "pixels") %>% 
  nnlayer_conv(
    kernelshape = c(1, 5, 5),
    name = "conv1", 
    stride = c(1, 2, 3)
  ) %>% 
  nnlayer_pool(
    kernelshape = c(1, 5, 5),
    name = "conv1", 
    stride = c(1, 2, 3)
  )
nnlayer_norm(NULL, inputshape = c(3, 11, 5), kernelshape = c(1,5,5), name = "rnorm1", inputname = "conv")
nnlayer_input(c(3, 50, 50), name = "pixels") %>% 
  nnlayer_conv(
    kernelshape = c(1, 5, 5),
    name = "conv1", 
    stride = c(1, 2, 3)
  ) %>% 
  nnlayer_norm(
    kernelshape = c(1, 5, 5),
    name = "norm1", 
    stride = c(1, 2, 3),
    alpha = 0.0001,
    beta = 0.75
  )
nnlayer_input(c(3, 50, 50), name = "pixels") %>% 
  nnlayer_conv(
    kernelshape = c(3, 5, 5), 
    name = "conv1", 
    stride = c(1, 2, 2),
    mapcount = 48
  ) %>% 
  nnlayer_conv(
    kernelshape = c(1, 4, 4), 
    stride = c(1, 2, 2),
    name = "conv2"
  ) %>% 
  nnlayer_full(nodes = 100, name = "hid1") %>% 
  nnlayer_full(nodes = 30, name = "hid2") %>% 
  nnlayer_output(nodes = 6, name = "class")
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.