View source: R/BN_module_func.R
BN_module | R Documentation |
BN_module
Performs automatically tuned MCMC sampling from posterior
distribution together with conventional MCMC sampling using empirical
biological prior matrix to sample network structures from posterior
distribution.
BN_module(burn_in, thin, OMICS_mod_res, minseglen, len = 5, prob_mbr = 0.07)
burn_in |
numeric vector the minimal length of burn-in period of the MCMC simulation. |
thin |
numeric vector thinning frequency of the resulting MCMC simulation. |
OMICS_mod_res |
list output from the OMICS_module function. |
minseglen |
numeric vector minimal number of iterations with the c_rms value below the c_rms threshold. |
len |
numeric vector initial width of the sampling interval for hyperparameter beta. |
prob_mbr |
numeric vector probability of the MBR step. |
Large List of 3 elements: empirical biological matrix, sampling phase result and hyperparameter beta tuning trace
data(list=c("PK", "TFtarg_mat", "annot", "gene_annot", "layers_def", "omics"), package="IntOMICS") OMICS_mod_res <- OMICS_module(omics = omics, PK = PK, layers_def = layers_def, TFtargs = TFtarg_mat, annot = annot, r_squared_thres = 0.3, lm_METH = TRUE) BN_mod_res <- BN_module(burn_in = 100000, thin = 500, OMICS_mod_res = OMICS_mod_res, minseglen = 50000, len = 5, prob_mbr = 0.07)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.