## code to prepare `compiled_species_list` dataset goes here
user <- "Anna"
# read in the species lists that were used to calculated the grouped indicators
plotnet_splist <- list.files(data_file_paths(user = user)$plotnet_splist_location, full.names = T) %>%
grep(pattern = "SpeciesFileMaster_", x = ., value = T) %>%
read.csv(., na.strings = c("NA", ""))
aimlmf_splist <- read.csv(data_file_paths(user = user)$aimlmf_splist,
na.strings = c("NA", ""))
nri_splist <- read.csv(file.path(dirname(data_file_paths(user = user)$nri), "SpeciesList_NRI_UCRB_clean.csv"),
na.strings = c("NA", ""))
# get the same columns for each list
plotnet_splist_slim <- dplyr::select(plotnet_splist, dplyr::any_of(colnames(aimlmf_splist)))
aimlmf_splist_slim <- dplyr::select(aimlmf_splist, dplyr::any_of(colnames(plotnet_splist_slim)))
nri_splist_slim <- dplyr::select(nri_splist, dplyr::any_of(colnames(aimlmf_splist_slim)))
# combine the lists, creating separate SpeciesState entries for AIM vs LMF so
# that they can be matched to the SourceKey column later on
compiled_species_list <- dplyr::bind_rows(plotnet_splist_slim,
dplyr::mutate(aimlmf_splist_slim,
SpeciesState = "AIM")) %>%
dplyr::bind_rows(.,
dplyr::mutate(aimlmf_splist_slim,
SpeciesState = "LMF")) %>%
dplyr::bind_rows(.,
nri_splist_slim) %>%
dplyr::distinct()
# Save it!
usethis::use_data(compiled_species_list, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.