#' @title
#' Computes the Greeks of a European option with the Malliavin Monte Carlo
#' Method in the Black Scholes model
#'
#' @description
#' For details on the definition of Greeks see [Greeks].
#' For a description of Malliavin Monte Carlo Methods for Greeks see for example
#' (Hudde & Rüschendorf, 2023).
#'
#' @export
#'
#' @seealso [BS_European_Greeks] for the exact and fast implementation for
#' call-, put- and digital payoff functions
#'
#' @import "stats"
#' @importFrom "dqrng" "dqrnorm" "dqset.seed"
#'
#' @param initial_price - initial price of the underlying asset
#' @param exercise_price - strike price of the option
#' @param r - risk-free interest rate
#' @param time_to_maturity - time to maturity in years
#' @param volatility - volatility of the underlying asset
#' @param payoff - the payoff function, either a string in ("call", "put",
#' "cash_or_nothing_call", "cash_or_nothing_call", "asset_or_nothing_call",
#' "asset_or_nothing_put"), or a function
#' @param greek - Greeks to be calculated in ("fair_value", "delta", "vega",
#' "theta", "rho", "gamma")
#' @param model - the model to be chosen
#' @param paths - the number of simulated paths
#' @param seed - the seed of the random number generator
#' @param antithetic - if TRUE, antithetic random numbers will be chosen to
#' decrease variance
#'
#' @return Named vector containing the values of the Greeks specified in the
#' parameter \code{greek}
#'
#' @examples Malliavin_European_Greeks(initial_price = 110,
#' exercise_price = 100, r = 0.02, time_to_maturity = 4.5,
#' volatility = 0.22, greek = c("fair_value", "delta", "rho"), payoff = "put")
#'
#' @references
#' Hudde, A., & Rüschendorf, L. (2023). European and Asian Greeks for Exponential Lévy Processes. Methodol Comput Appl Probab, 25 (39). \doi{10.1007/s11009-023-10014-5}
#'
Malliavin_European_Greeks <-
function(initial_price = 100,
exercise_price = 100,
r = 0,
time_to_maturity = 1,
volatility = 0.3,
payoff = "call",
greek = c("fair_value", "delta", "vega", "theta", "rho", "gamma"),
model = "Black Scholes",
paths = 10000,
seed = 1,
antithetic = FALSE) {
result <- vector(mode = "numeric", length = length(greek)) * NA
names(result) <- greek
## the seed is set
if (!is.na(seed)) {
dqset.seed(seed)
}
## the increments of the Brownian motion ###
if (antithetic == TRUE) {
W_T <- dqrnorm(n = paths/2, sd = sqrt(time_to_maturity))
W_T <- rbind(W_T, -W_T)
} else {
W_T <- dqrnorm(n = paths, sd = sqrt(time_to_maturity))
}
### the payoff function ###
if (inherits(payoff, "function")) {
print("custom payoff")
} else if (payoff == "call") {
payoff <- function(x) {
return(pmax(0, x-exercise_price))
}
} else if (payoff == "put") {
payoff <- function(x) {
return(pmax(0, exercise_price-x))
}
} else if (payoff %in% c("digital_call", "cash_or_nothing_call")) {
payoff <- function(x) {ifelse(x >= exercise_price, 1, 0)
}
} else if (payoff %in% c("digital_put", "cash_or_nothing_put")) {
payoff <- function(x) {ifelse(x <= exercise_price, 1, 0)
}
} else if (payoff %in% c("asset_or_nothing_call")) {
payoff <- function(x) {ifelse(x >= exercise_price, x, 0)
}
} else if (payoff %in% c("asset_or_nothing_put")) {
payoff <- function(x) {ifelse(x <= exercise_price, x, 0)
}
}
if (model == "Black Scholes") {
X_T <- initial_price *
exp((r - (volatility^2)/2)*time_to_maturity +
(volatility*W_T))
} else {
stop("Unknown model")
}
E <- function(weight) {
return(exp(-r*time_to_maturity) *
mean(payoff(X_T) * weight))
}
if ("fair_value" %in% greek) {
result["fair_value"] <-
E(1)
}
if ("delta" %in% greek) {
result["delta"] <-
(W_T / (initial_price * volatility * time_to_maturity)) %>%
E()
}
if ("vega" %in% greek) {
result["vega"] <-
(W_T^2/(volatility*time_to_maturity) - W_T - 1/volatility) %>%
E()
}
if ("rho" %in% greek) {
result["rho"] <-
(time_to_maturity * (W_T/(volatility*time_to_maturity) - 1)) %>%
E()
}
if ("theta" %in% greek) {
result["theta"] <-
-(W_T^2/(2*time_to_maturity^2) +
(r - volatility^2/2)*W_T/(volatility*time_to_maturity) -
(1/(2*time_to_maturity) + r)) %>%
E()
}
if ("gamma" %in% greek) {
result["gamma"] <-
((1 / (initial_price^2 * volatility * time_to_maturity)) *
(W_T^2/(volatility*time_to_maturity) - W_T - 1/volatility)) %>%
E()
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.