| cov_estim_ml | R Documentation | 
Computes the Maximum-Likelihood (ML) estimator of the covariance matrix.
cov_estim_ml(data)
data | 
 an nxp data matrix.  | 
The Maximum-Likelihood estimator of the covariance matrix for a data matrix X is computed with the following formula:
\hat{\Sigma}=\frac{1}{n} \left(X - \widehat{{\mu}} {1} \right)' \left({X} -  \widehat{{\mu}}{1}\right)
where \mu=\bar{x}_{j}=\frac{1}{n}\sum_{i=1}^{n}x_{ij} for (for i=1,\ldots, n
and j=1,\ldots,p) is the sample mean vector and 1 is an 1xp vector of ones.
a list with the following entries
a pxp estimated covariance matrix.
an estimation specific tuning parameter, here an NA.
data(rets_m)
sigma_ml <- cov_estim_ml(rets_m)[[1]]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.