View source: R/cov_estim_pca.R
cov_estim_pca | R Documentation |
Computes a Principal Component Analysis (PCA) estimator of the covariance matrix.
cov_estim_pca(data, number_pc = NULL)
data |
an nxp data matrix |
number_pc |
an integer, indicating the number of principal components. Default value is NULL and the number of principal components is set according to the Marcenko-Pastur edge as in \insertCitemarvcenko1967distribution;textualcovestim. |
a list with the following entries
a pxp estimated covariance matrix.
an estimation specific tuning parameter, here the number of principal components.
johnson2002appliedcovestim
\insertReffan2016overviewcovestim
data(rets_m)
# user-defined number of factors
sigma_pca <- cov_estim_pca(rets_m, number_pc = 2)[[1]]
# number of factors, defined with MP cut-edge
results_pca_mp <- cov_estim_pca(rets_m)
sigma_pca_mp <- results_pca_mp[[1]]
number_pc <- results_pca_mp[[2]]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.