View source: R/cov_estim_tlasso.R
cov_estim_tlasso | R Documentation |
Computes the t-Lasso (TLASSO) estimator of the covariance matrix.
cov_estim_tlasso(
data,
rho = NULL,
pendiag_log = FALSE,
df = 3,
tol = 1e-05,
maxit = 10000,
symmetric_log = TRUE,
theta_init = NULL
)
data |
an nxp data matrix. |
rho |
a double, the non-negative regularization parameter |
pendiag_log |
a logical, indicating whether the diagonal of the sample covariance matrix is to be penalized (TRUE) or not (FALSE). Default value is FALSE. |
df |
an integer, indicating the degrees of freedom of the assumed t-distribution. Default value is 3. |
tol |
a double, indicating the tolerance for the glasso algorithm. Default value is set to 1e-05. |
maxit |
an integer, indicating the maximum number of iterations for the glasso algorithm. Default value is set to 10000. |
symmetric_log |
a logical, indicating whether the output should be a symmetric matrix (TRUE) or not necessarily (FALSE). Default value is set to TRUE. |
theta_init |
a pxp initial matrix for the inverse of the covariance matrix. Default value is NULL and the sample inverse for the t-distribution is used. |
The TLASSO estimator is elaborated in detail in \insertCitefinegold2011robust;textualcovestim. Originally developed by \insertCitetorri2019sparse;textualcovestim.
a list with the following entries
a pxp estimated covariance matrix.
an estimation specific tuning parameter, here the lasso penalty.
## Not run:
data(rets_m)
sigma_tlasso <- cov_estim_tlasso(rets_m, rho = 0.001)[[1]]
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.