library(ggpmisc)
# Normal -> gaussian ------------------------------------------------------
set.seed(1)
df <- data.frame(x = 1:100,
y = rpois(100, seq(1, 5, length.out = 100)))
model <- glm(y ~ x, data = df, family = gaussian)
ggplot(df, aes(x, y)) +
geom_point() +
stat_poly_line(method = "lm", se = TRUE) +
stat_poly_eq(method = "lm")
ggplot(df, aes(x, y)) +
geom_point() +
stat_poly_line(method = "glm", method.args = list(family = gaussian), se = FALSE) +
stat_poly_eq(use_label("eq"), method = "glm", method.args = list(family = gaussian))
ggplot(df, aes(x, y)) +
geom_point() +
stat_smooth(method = "glm", method.args = list(family = gaussian), se = TRUE) +
stat_poly_eq(method = "glm", method.args = list(family = gaussian))
ggplot(df, aes(x, y)) +
geom_point() +
stat_poly_line(method = "glm", method.args = list(family = gaussian), se = TRUE) +
stat_poly_eq(use_label("eq", "p"), method = "glm", method.args = list(family = gaussian))
# Poisson -> poisson ------------------------------------------------------
# example from https://stackoverflow.com/questions/69808033/how-can-i-create-a-ggplot-with-a-regression-line-based-on-the-predicted-values-o
set.seed(1)
df <- data.frame(x = 1:100,
y = rpois(100, seq(1, 5, length.out = 100)))
model <- glm(y ~ x, data = df, family = poisson)
ggplot(df, aes(x, y)) +
geom_point() +
stat_poly_line(method = "glm", method.args = list(family = poisson), se = FALSE) +
stat_poly_eq(method = "glm", method.args = list(family = poisson))
ggplot(df, aes(x, y)) +
geom_point() +
stat_smooth(method = "glm", method.args = list(family = poisson), se = TRUE) +
stat_poly_eq(method = "glm", method.args = list(family = poisson))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.