runiregGibbs_me=
function(Data,Prior,Mcmc)
{
#
# runiregGibbs {bayesm} modified by A. Laghaie (2019) for estimating mediation models
#
# Purpose:
# perform Gibbs iterations for Univ Regression Model using
# prior with beta, sigma-sq indep
#
# Arguments:
# Data -- list of data
# y,X
# Prior -- list of prior hyperparameters
# betabar,A prior mean, prior precision
# nu, ssq prior on sigmasq
# Mcmc -- list of MCMC parms
# sigmasq=initial value for sigmasq
# R number of draws
# keep -- thinning parameter
# nprint - print estimated time remaining on every nprint'th draw
#
# Output:
# list of beta, sigmasq
#
# Model:
# y = Xbeta + e e ~N(0,sigmasq)
# y is n x 1
# X is n x k
# beta is k x 1 vector of coefficients
#
# Priors: beta ~ N(betabar,A^-1)
# sigmasq ~ (nu*ssq)/chisq_nu
#
#
# check arguments
#
if(missing(Data)) {stop("Requires Data argument -- list of y and X")}
if(is.null(Data$X)) {stop("Requires Data element X")}
X=Data$X
if(is.null(Data$y)) {stop("Requires Data element y")}
y=Data$y
nvar=ncol(X)
nobs=length(y)
#
# check data for validity
#
if(nobs != nrow(X) ) {stop("length(y) ne nrow(X)")}
#
# check MCMC argument
#
if(missing(Mcmc)) {stop("requires Mcmc argument")}
else
{
if(is.null(Mcmc$R))
{stop("requires Mcmc element R")} else {R=Mcmc$R}
if(is.null(Mcmc$keep)) {keep=1} else {keep=Mcmc$keep}
if(is.null(Mcmc$nprint)) {nprint=100} else {nprint=Mcmc$nprint}
if(nprint<0) {stop('nprint must be an integer greater than or equal to 0')}
if(is.null(Mcmc$sigmasq)) {sigmasq=stats::var(y)} else {sigmasq=Mcmc$sigmasq}
}
#
# check for Prior
#
if(missing(Prior))
{ betabar=c(rep(0,nvar)); A=.01*diag(nvar); nu=3; ssq=stats::var(y); betafix=F; sigmafix=F; betavalue=matrix(double(R*nvar),ncol=nvar); sigmavalue=rep(0,R)}
else
{
if(is.null(Prior$betabar)) {betabar=c(rep(0,nvar))}
else {betabar=Prior$betabar}
if(is.null(Prior$A)) {A=.01*diag(nvar)}
else {A=Prior$A}
if(is.null(Prior$nu)) {nu=3}
else {nu=Prior$nu}
if(is.null(Prior$ssq)) {ssq=stats::var(y)}
else {ssq=Prior$ssq}
if(is.null(Prior$betafix)) {betafix=F} #betafix is the indicator for setting the intercept to 0 and the beta coefficient to 1 (for estimating M in the measurement error equation )
else {betafix=Prior$betafix}
if(is.null(Prior$sigmafix)) {sigmafix=F} #betafix is the indicator for setting the intercept to 0 and the beta coefficient to 1 (for estimating M in the measurement error equation )
else {sigmafix=Prior$sigmafix}
if(is.null(Prior$betavalue)) {betavalue=matrix(double(R*nvar),ncol=nvar)} #betavalue is the fixed value of beta (in case betafix=T )
else {betavalue=Prior$betavalue}
if(is.null(Prior$sigmavalue)) {sigmavalue=rep(0,2)} #sigmavalue is the fixed value of sigma (in case sigmafix=T )
else {sigmavalue=Prior$sigmavalue}
}
#
# check dimensions of Priors
#
if(ncol(A) != nrow(A) || ncol(A) != nvar || nrow(A) != nvar)
{stop(paste("bad dimensions for A",dim(A)))}
if(length(betabar) != nvar)
{stop(paste("betabar wrong length, length= ",length(betabar)))}
#
# print out problem
#
# cat(" ", fill=TRUE)
# cat("Starting Gibbs Sampler for Univariate Regression Model",fill=TRUE)
# cat(" with ",nobs," observations",fill=TRUE)
# cat(" ", fill=TRUE)
# cat("Prior Parms: ",fill=TRUE)
# cat("betabar",fill=TRUE)
# print(betabar)
# cat("A",fill=TRUE)
# print(A)
# cat("nu = ",nu," ssq= ",ssq,fill=TRUE)
# cat(" ", fill=TRUE)
# cat("MCMC parms: ",fill=TRUE)
# cat("R= ",R," keep= ",keep," nprint= ",nprint,fill=TRUE)
# cat(" ",fill=TRUE)
###################################################################
# Keunwoo Kim 08/05/2014
# edited by A. Laghaie 2019 for the estimation of the mediation models
###################################################################
draws = runiregGibbs_rcpp_me(y, X, betabar, A, nu, ssq, sigmasq, R, keep, nprint, betafix, sigmafix, betavalue, sigmavalue)
###################################################################
return(draws)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.