This package contains hdf5 output from running Kallisto 0.42.2.1 against the samples in GSE37704, accompanying Trapnell et al, Nat Biotech 2013.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | library(dplyr)
library(sleuth)
library(sleuthData)
## find the data
getkdir <- function(id) file.path(base_dir, "results", id, "kallisto")
base_dir <- system.file("extdata", "", package="sleuthData")
sample_id <- dir(file.path(base_dir,"results"))
kal_dirs <- sapply(sample_id, getkdir)
## map samples to covariates
s2c <- read.table(file.path(base_dir, "hiseq_info.txt"),
header=TRUE, stringsAsFactors=FALSE)
s2c <- dplyr::select(s2c, sample=run_accession, condition)
## run sleuth with no annotation
so <- sleuth_prep(kal_dirs, s2c, ~ condition)
so <- sleuth_fit(so)
so <- sleuth_test(so, which_beta = 'conditionscramble')
models(so)
## annotate transcripts
library(biomaRt)
mart <- biomaRt::useMart(biomart = "ensembl",
dataset = "hsapiens_gene_ensembl")
t2g <- biomaRt::getBM(attributes = c("ensembl_transcript_id",
"ensembl_gene_id",
"external_gene_name"),
mart = mart)
t2g <- dplyr::rename(t2g, target_id = ensembl_transcript_id,
ens_gene = ensembl_gene_id, ext_gene = external_gene_name)
so <- sleuth_prep(kal_dirs, s2c, ~ condition, target_mapping = t2g)
so <- sleuth_fit(so)
so <- sleuth_test(so, which_beta = 'conditionscramble')
## visualize the results
sleuth_live(so)
## a table for downstream analysis
results_table <- sleuth_results(so, 'conditionscramble')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.