AFSSEN: AFSSEN

View source: R/AFSSEN.R

AFSSENR Documentation

AFSSEN

Description

It computes important variables and produce smooth estimates of their parameters in a function-on-scalar linear model with sub-Gaussian errors and high-dimensional predictors.

Usage

AFSSEN(X, Y, T_domain = seq(0, 1, length = 50),
  type_kernel = "exponential", param_kernel = 8, thres = 0.02,
  number_non_zeros = 20, ratio_lambda_H = 0.01,
  number_lambda_H = 100, num_lambda_H_NONad = 50,
  lambda_H = numeric(), lambda_K, early_CV = 0,
  early_CV_thres = 0.001, max_ite_nadp = 10, max_ite_adp = 30,
  max_ite_final = 50, target_inc = 1, proportion_training_set = 0.75,
  verbose = FALSE, fold_ad = 10)

Arguments

X

matrix. N by I design matrix. It has standardized columns.

Y

matrix. N by m matrix of pointwise observations.

T_domain

vector. Time domain for evaluation of Y and generating kernel. Default is T_domain = seq(0,1,m=50)

type_kernel

string. three possible choices are implemented. gaussian, Defualt is "exponential". exponential, sobolev.

param_kernel

scalar. Value of the characteristic smoothing parameter of the kernel. It is the σ parameter of the Gaussian and the Exponential kernel, as introduced the σ parameter of the Sobolev. Defualt is 8.

thres

scalar. Stopping criteria: beta increment threshold

|| β^{T} - β^(T-1) ||_{H} < thres

Defualt is 0.02.

number_non_zeros

scalar. Stopping Criteria: Kill switch; number of nonzero predictors Defualt is 20.

ratio_lambda_H

scalar. λ_{Hmax}/λ_{Hmin} Defualt is 0.01.

number_lambda_H

scalar. Generate the number of log-equally spaced λ_{H} in [λ_{Hmin},λ_{Hmax}]. Defualt is 100.

num_lambda_H_NONad

scalar. Number of λ_H in non-adaptive step Defualt is 50.

lambda_H

vector. You have option to insert directly a vector of λ_H. Defualt is numeric().

lambda_K

vector. Vector of λ_{K}.

early_CV

binary. 0 or 1 : applying the early_CV_thres stopping criteria or not. Defualt is 0.

early_CV_thres

scalar. Stopping Criteria: Breaking point in CV plot.

|CV(h-1,k)-CV(h,k)| / |CV(h-1,k)| < early_CV_thres

Defualt is 0.001.

max_ite_nadp

scalar. Stopping Criteria: Maximum iteration of coordinate descent algorithm in non-adaptive step Defualt is 10.

max_ite_adp

scalar. Stopping Criteria: Maximum iteration of coordinate descent algorithm in adaptive step Defualt is 30.

max_ite_final

scalar. Stopping Criteria: Maximum iteration of coordinate descent algorithm in final step Defualt is 50.

target_inc

binary. Stopping Criteria: 0 or 1 : if target function is increased, stop Defualt is 1.

proportion_training_set

scalar. value in (0,1), the proportion for the training set for the Cross Validation in non-adaptive step Defualt is 0.75.

fold_ad

scalar. Number of fold for using CV in adaptive steps to find optimum λ_{H} and λ_{K} and then the coefficients estimation. Defualt is 10.

Value

list containing:

  • beta : matrix. final estimation of coefficients.

  • beta_no_adaptive : matrix. estimation of coefficients after non-adaptive step.

  • predictors : vector. final significant predictors.

  • predictors_no_adaptive : vector. significant predictors after non-adaptive step.

  • lambda_H_opt : scalar. optimum λ_{H}

  • lambda_K_opt : scalar. optimum λ_{K}

Examples

## Not run: 
data(simulation)
data(SobolevKernel)
time <- proc.time()
FLAME_estimation <- FLAME()
duration <- proc.time()-time
duration
names(FLAME_estimation)

## End(Not run)


ardeeshany/AFSSEN documentation built on Aug. 28, 2022, 2:22 p.m.