View source: R/generation_kernel_periodic.R
| generation_kernel_periodic | R Documentation | 
Given the period p and the smoothing parameter σ, it returns the
evaluation of the eigenfunctions of the kernel on the grid domain
and the correspondent eigenvalues.
generation_kernel_periodic(period = NULL, parameter = NULL, domain, thres = 0.99, return.derivatives = FALSE)
| period | scalar. Period of the kernel. | 
| parameter | scalar. Parameter to tune the smoothness level of the kernel. The σ parameter introduced in Details. | 
| domain | vector.  | 
| thres | scalar. Threshold for the identification of the significant
eigenvalues of the kernel. The number of significant eigennvalues  ∑_{j = 1}^J θ_j ≥q \textrm{thres} ∑_{j = 1}^{∞} θ_j. Default is 0.99. | 
| return.derivatives | bool. If  | 
The periodic kernel of period p defined in this function is
K(x, y) = σ^2 \exp ≤ft\{ -2/σ \sin^2≤ft(\frac{π | x - y|}{p} \right)\right\}.
where σ is the smoothing parameter.
list containing
eigenvect m \times J matrix of
the eigenfunctions of the kernel evaluated on the domain.
eigenval J-length  vector of the
eigenvalues of the kernel
derivatives. if return.derivatives = TRUE.
m-1 \times J matrix of the derivatives of
the eigenfunctions.
param_kernel <- 8
T_domain <- seq(0, 1, length = 50)
kernel_here <- generation_kernel_periodic(period = 1/2,
                                          parameter = param_kernel,
                                          domain = T_domain,
                                          thres = 1-10^{-16},
                                          return.derivatives = TRUE)
names(kernel_here)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.