Description Usage Arguments Details Value Warning Author(s) References See Also Examples
Performs robust quadratic discriminant analysis and returns 
the results as an object of class QdaCov (aka constructor). 
| 1 2 3 4 5 | QdaCov(x, ...)
## Default S3 method:
QdaCov(x, grouping, prior = proportions, tol = 1.0e-4,
                 method = CovControlMcd(), ...)
 | 
| x | a matrix or data frame containing the explanatory variables (training set). | 
| grouping | grouping variable: a factor specifying the class for each observation. | 
| prior | prior probabilities, default to the class proportions for the training set. | 
| tol | tolerance | 
| method | method | 
| ... | arguments passed to or from other methods | 
details
Returns an S4 object of class QdaCov
Still an experimental version!
Valentin Todorov valentin.todorov@chello.at
Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. URL http://www.jstatsoft.org/v32/i03/.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Example anorexia
library(MASS)
data(anorexia)
## start with the classical estimates
qda <- QdaClassic(Treat~., data=anorexia)
predict(qda)@classification
## try now the robust LDA with the default method (MCD with pooled whitin cov matrix)
rqda <- QdaCov(Treat~., data= anorexia)
predict(rqda)@classification
## try the other methods
QdaCov(Treat~., data= anorexia, method="sde")
QdaCov(Treat~., data= anorexia, method="M")
QdaCov(Treat~., data= anorexia, method=CovControlOgk())
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.