#' Plot data distribution as histograms.
#'
#' This function takes a data table, a quantitative variable (`ycol`) and a grouping variable (`group`), if available, and plots a histogram graph using \code{\link[ggplot2]{geom_histogram}}). Alternatives are \code{\link{plot_density}}, or \code{\link{plot_qqline}}.
#'
#' Note that the function requires the quantitative Y variable first, and groups them based on a categorical variable passed on via the `group` argument. The grouping variable is mapped to the \code{fill} aesthetics in \code{\link[ggplot2]{geom_histogram}}.
#'
#' ColPal & ColRev options are applied to both `fill` and `colour` scales. Colours available can be seen quickly with \code{\link{plot_grafify_palette}}.
#' Colours can be changed using `ColPal`, `ColRev` or `ColSeq` arguments.
#' `ColPal` can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast".
#' `ColRev` (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette.
#' `ColSeq` decides whether colours are picked by respecting the order in the palette or the most distant ones using \code{\link[grDevices]{colorRampPalette}}.
#'
#' @param data a data table e.g. data.frame or tibble.
#' @param ycol name of the column (without quotes) with the quantitative variable whose histogram distribution is to be plotted.
#' @param group name of the column containing a categorical grouping variable.
#' @param facet add another variable (without quotes) from the data table to create faceted graphs using \code{\link[ggplot2]{facet_wrap}}.
#' @param PlotType the default (`Counts`) plot will plot counts in the bins, which can be changed to `Normalised counts`.
#' @param BinSize number of distinct bins to use on X-axis, default set to 30.
#' @param c_alpha fractional opacity of colour filled within histograms, default set to 0.8 (i.e. 80% opacity).
#' @param TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
#' @param facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can be `fixed` (default), `free`, `free_y` or `free_x` (for Y and X axis one at a time, respectively).
#' @param fontsize parameter of \code{base_size} of fonts in \code{\link[ggplot2]{theme_classic}}, default set to size 20.
#' @param linethick thickness of symbol border, default set to `fontsize`/22.
#' @param alpha deprecated old argument for `c_alpha`; retained for backward compatibility.
#' @param ColPal grafify colour palette to apply (in quotes), default "okabe_ito"; see \code{\link{graf_palettes}} for available palettes.
#' @param ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using \code{scale_fill_grafify2}.
#' @param ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
#' @param SingleColour a colour hexcode (starting with #, e.g., "#E69F00"), a number between 1-154, or names of colours from `grafify` palettes or base R to fill along X-axis aesthetic. Accepts any colour other than "black"; use `grey_lin11`, which is almost black.
#' @param LogYTrans transform Y axis into "log10" or "log2" (in quotes).
#' @param LogYBreaks argument for \code{\link[ggplot2]{scale_y_continuous}} for Y axis breaks on log scales, default is `waiver()`, or provide a vector of desired breaks.
#' @param LogYLabels argument for \code{\link[ggplot2]{scale_y_continuous}} for Y axis labels on log scales, default is `waiver()`, or provide a vector of desired labels.
#' @param LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis.
#' @param ... any additional arguments to pass to \code{\link[ggplot2]{geom_histogram}}.
#'
#' @return This function returns a \code{ggplot2} object of class "gg" and "ggplot".
#' @export plot_histogram
#' @import ggplot2
#' @importFrom dplyr count
#'
#' @examples
#' #Basic usage
#' plot_histogram(data = data_t_pratio,
#' ycol = Cytokine, group = Genotype,
#' BinSize = 10)
#' #with log transformation
#' plot_histogram(data = data_t_pratio,
#' ycol = log(Cytokine), group = Genotype,
#' BinSize = 10)
#' #Normalised counts
#' plot_histogram(data = data_t_pratio,
#' ycol = log(Cytokine), group = Genotype,
#' PlotType = "Normalised counts",
#' BinSize = 10)
plot_histogram <- function(data, ycol, group, facet, PlotType = c("Counts", "Normalised counts"), BinSize = 30, c_alpha = 0.8, TextXAngle = 0, facet_scales = "fixed", fontsize = 20, linethick, alpha, LogYTrans, LogYBreaks = waiver(), LogYLabels = waiver(), LogYLimits = NULL, ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly", "light", "muted", "pale", "r4", "safe", "vibrant"), ColSeq = TRUE, ColRev = FALSE, SingleColour = NULL, ...){
if(missing(linethick)) {linethick = fontsize/22}
if (!missing("alpha")) {
warning("Use `c_alpha` argument instead, as `alpha` is deprecated.")
c_alpha <- substitute(alpha)}
ColPal <- match.arg(ColPal)
PlotType <- match.arg(PlotType)
if (!(PlotType %in% c("Counts", "Normalised counts"))) {
stop("`PlotType` can only be 'Counts' or 'Normalised Counts'.")
}
if(missing(group) & missing(SingleColour)) {message("You did not provide a grouping variable, so grafify used the default colour. You can change this with the `SingleColour` argument.") }
if(!is.null(SingleColour)){
ifelse(grepl("#", SingleColour),
a <- SingleColour,
ifelse(isTRUE(get_graf_colours(SingleColour) != 0),
a <- unname(get_graf_colours(SingleColour)),
a <- SingleColour))
} else a <- "#E69F00"
if(missing(group)) {
suppressWarnings(P <- ggplot2::ggplot(data,
aes({{ ycol }},
fill = "one",
colour = "one")) +
scale_fill_manual(values = a)+
scale_colour_manual(values = a)+
guides(fill = "none", colour = "none"))
} else {
suppressWarnings(P <- ggplot2::ggplot(data,
aes({{ ycol }},
fill = factor({{ group }}),
colour = factor({{ group }}))))
}
if(PlotType == "Counts") {
P <- P +
geom_histogram(linewidth = linethick,
alpha = c_alpha,
bins = BinSize,
#colour = "black"
)+
labs(y = "Counts")}
if(PlotType == "Normalised counts") {
P <- P +
geom_histogram(linewidth = linethick,
alpha = c_alpha,
bins = BinSize,
#colour = "black",
aes(y = after_stat(count/max(count))))+
labs(y = "Normalised counts")}
if (!missing(LogYTrans)) {
if (!(LogYTrans %in% c("log2", "log10"))) {
stop("LogYTrans only allows 'log2' or 'log10' transformation.")
}
if (LogYTrans == "log10") {
P <- P +
scale_x_continuous(trans = "log10",
breaks = LogYBreaks,
labels = LogYLabels,
limits = LogYLimits,
...)+
annotation_logticks(sides = "b",
outside = TRUE,
base = 10, color = "grey20",
long = unit(7*fontsize/22, "pt"), size = unit(fontsize/22, "pt"),#
short = unit(4*fontsize/22, "pt"), mid = unit(4*fontsize/22, "pt"),#
...)+
coord_cartesian(clip = "off", ...)
}
if (LogYTrans == "log2") {
P <- P +
scale_x_continuous(trans = "log2",
breaks = LogYBreaks,
labels = LogYLabels,
limits = LogYLimits,
...)}
}
if(!missing(facet)) {
P <- P + facet_wrap(vars({{ facet }}),
scales = facet_scales,
...)
}
if (!is.null(SingleColour)) {
if (missing(group)) {
P <- P +
scale_fill_manual(values = rep(a, times = 1)) +
scale_colour_manual(values = rep(a, times = 1))
} else {
group <- deparse(substitute(group))
x <- length(levels(factor(data[[group]])))
P <- P +
scale_fill_manual(values = rep(a, times = x)) +
scale_colour_manual(values = rep(a, times = x)) +
labs(fill = enquo(group),
colour = enquo(group))
}
} else {
P <- P +
scale_fill_grafify(palette = ColPal,
reverse = ColRev,
ColSeq = ColSeq)+
scale_colour_grafify(palette = ColPal,
reverse = ColRev,
ColSeq = ColSeq) +
labs(fill = enquo(group),
colour = enquo(group))
}
P <- P +
theme_grafify(base_size = fontsize)+
guides(x = guide_axis(angle = TextXAngle))
P
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.