Description Usage Arguments Value Functions Examples
Exploratory Alarm Tool for Outbreak Detection.
1 2 3 4 5 6 7 8 9 10 11 12 | epi_adapt_timeserie(db_disease, db_population, var_admx, var_year,
var_week, var_event_count, var_population)
epi_create_channel(time_serie, disease_name = "disease_name",
method = "gmean_1sd")
epi_join_channel(disease_channel, disease_now, adm_columns = NULL)
epi_plot_channel(joined_channel, n_breaks = 10)
epi_observe_alert(joined_channel, threshold = upp_95,
alert_distance = 3)
|
db_disease |
disease surveillance datasets |
db_population |
estimated population for each adm area |
var_admx |
administrative code r name as string |
var_year |
year of agregated observations |
var_week |
week of agregated observations |
var_event_count |
number of events per week-year |
var_population |
estimated population at that year |
time_serie |
time serie |
disease_name |
free code name of diseases |
method |
specify the method. "gmean_1sd" is geometric mean w/ 1 standard deviation (default). "gmean_2sd" is gmean w/ 2 sd. "gmean_ci" is gmean w/ 95 percent confidence intervals. |
disease_channel |
salida de epi_*_mutate |
disease_now |
nueva base de vigilancia |
adm_columns |
dataframe with names of the administrative code or name strings |
joined_channel |
base de datos unida |
n_breaks |
number of breaks in x axis |
canal endemico, union y grafico
epi_adapt_timeserie
:
epi_create_channel
: create endemic channel
epi_join_channel
: join preliminary steps
epi_plot_channel
: create ggplot
epi_observe_alert
: create ggplot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | library(tidyverse)
# import data -------------------------------------------------------------
denv <-
readr::read_csv("https://dengueforecasting.noaa.gov/Training/Iquitos_Training_Data.csv") %>%
mutate(year = lubridate::year(week_start_date),
epiweek = lubridate::epiweek(week_start_date)) %>%
mutate(adm="iquitos") %>%
# cases per season - replace wiht a dummy year
mutate(year = str_replace(season,"(.+)/(.+)","\\1") %>% as.double())
# denv %>% count(year,season,lag_year)
denv %>% glimpse()
# denv %>%
# ggplot(aes(x = week_start_date,y = total_cases)) +
# geom_col()
popdb <-
readr::read_csv("https://dengueforecasting.noaa.gov/PopulationData/Iquitos_Population_Data.csv") %>%
janitor::clean_names() %>%
mutate(adm="iquitos")
popdb %>% glimpse()
# popdb %>% count(year)
# denv %>% count(year)
# denv %>% left_join(popdb)
# first, adapt ------------------------------------------------------------
epi_adapted <-
epi_adapt_timeserie(db_disease = denv,
db_population = popdb,
var_admx = adm,
# var_year = year, # must be a common variable between datasets
# var_week = epiweek,
var_year = year, # not working - need to create pseudo-years
var_week = season_week,
var_event_count = total_cases,
var_population = estimated_population)
# second, filter ----------------------------------------------------------
disease_now <- epi_adapted %>%
filter(var_year==max(var_year))
disease_pre <- epi_adapted %>%
filter(var_year!=max(var_year))
# third, create -----------------------------------------------------------
disease_channel <-
epi_create_channel(time_serie = disease_pre,
disease_name = "denv")
disease_channel
# fourth, ggplot it -------------------------------------------------------
epi_join_channel(disease_channel = disease_channel,
disease_now = disease_now) %>%
# ggplot
epi_plot_channel() +
labs(title = "Dengue virus Endemic Channel. Iquitos, Peru 2008/2009",
caption = "Source: https://dengueforecasting.noaa.gov/",
# x = "epiweeks",
x = "Seasonal week",
y = "Number of cases") +
theme_bw()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.