Robustez do método - Runs dá coisas diferentes - Uma forma para escolher um bom modelo para treinar (simulando várias partições) - Em particular nós usamos esta framework para escolher um modelo particular para mostrar resultados - Isto não é visto em resultados de papers-- pq há muitos runs q não dão significativos
Rank dos 3 métodos
O que usar como tempo de follow-up (inconsistência entre melanoma e breast)
Dar nomes aos resultados - estabilidade - consistência de genes seleccionados
Identificar as dificuldades em avaliar os resultados
devtools::load_all()
n.cores <- 14 my.render('Analysis.Rmd', output_file = 'brca-center-1000-random.html', params = list(normalization = 'center', project = 'brca.data.2018.09.13', tissue = 'primary.solid.tumor', subtract.surv.column = NULL, balanced.sets = FALSE, ntimes = 1000, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .2, vars = 39), hub = list(alpha = .2, vars = 56), orphan = list(alpha = .2, vars = 42)) )) my.render('Analysis.Rmd', output_file = 'skcm-center-1000-random.html', params = list(normalization = 'center', project = 'skcm.data.2018.09.11', tissue = 'metastatic', balanced.sets = FALSE, n.cores = n.cores, subtract.surv.column = 'days_to_submitted_specimen_dx', ntimes = 1000, target.vars = list(glmnet = list(alpha = .1, vars = 116), hub = list(alpha = .1, vars = 41), orphan = list(alpha = .1, vars = 111)) ))
n.cores <- 14 ntimes <- 5000 # # Completely random training/test sets instead of balanced # my.render('Analysis.Rmd', output_file = sprintf('brca-center-%d.html', ntimes), params = list(normalization = 'center', project = 'brca.data.2018.09.13', tissue = 'primary.solid.tumor', subtract.surv.column = NULL, balanced.sets = TRUE, ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .2, vars = 39), hub = list(alpha = .2, vars = 56), orphan = list(alpha = .2, vars = 42)) )) my.render('Analysis.Rmd', output_file = sprintf('skcm-center-%d.html', ntimes), params = list(normalization = 'center', project = 'skcm.data.2018.09.11', tissue = 'metastatic', balanced.sets = TRUE, subtract.surv.column = 'days_to_submitted_specimen_dx', ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .1, vars = 116), hub = list(alpha = .1, vars = 41), orphan = list(alpha = .1, vars = 111)) )) my.render('Analysis.Rmd', output_file = sprintf('kirc-center-%d.html', ntimes), params = list(normalization = 'center', project = 'kirc.data.2018.10.17', tissue = 'primary.solid.tumor', balanced.sets = TRUE, subtract.surv.column = NULL, ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .2, vars = 69), hub = list(alpha = .1, vars = 41), orphan = list(alpha = .1, vars = 38)) )) my.render('Analysis.Rmd', output_file = sprintf('lgg-center-%d.html', ntimes), params = list(normalization = 'center', project = 'lgg.data.2018.10.17', tissue = 'primary.solid.tumor', balanced.sets = TRUE, subtract.surv.column = NULL, ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .1, vars = 175), hub = list(alpha = .2, vars = 51), orphan = list(alpha = .2, vars = 101)) )) my.render('Analysis.Rmd', output_file = sprintf('luad-center-%d.html', ntimes), params = list(normalization = 'center', project = 'luad.data.2018.10.17', tissue = 'primary.solid.tumor', balanced.sets = TRUE, subtract.surv.column = NULL, ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .1, vars = 110), hub = list(alpha = .1, vars = 56), orphan = list(alpha = .1, vars = 97)) )) my.render('Analysis.Rmd', output_file = sprintf('prad-center-%d.html', ntimes), params = list(normalization = 'center', project = 'prad.data.2018.10.11', tissue = 'primary.solid.tumor', balanced.sets = TRUE, subtract.surv.column = NULL, ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .6, vars = 3), hub = list(alpha = .1, vars = 13), orphan = list(alpha = .1, vars = 5)) )) my.render('Analysis.Rmd', output_file = sprintf('ucec-center-%d.html', ntimes), params = list(normalization = 'center', project = 'ucec.data.2018.10.17', tissue = 'primary.solid.tumor', balanced.sets = TRUE, subtract.surv.column = NULL, ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .1, vars = 170), hub = list(alpha = .1, vars = 38), orphan = list(alpha = .1, vars = 125)) )) my.render('Analysis.Rmd', output_file = sprintf('ov-center-%d.html', ntimes), params = list(normalization = 'center', project = 'ov.data.2018.11.30', tissue = 'primary.solid.tumor', subtract.surv.column = NULL, balanced.sets = TRUE, ntimes = ntimes, n.cores = n.cores, target.vars = list(glmnet = list(alpha = .2, vars = 30), hub = list(alpha = .2, vars = 55), orphan = list(alpha = .2, vars = 110)) ))
n.cores <- 10 seed.additional <- 1 my.render('OptimalVariableSize.Rmd', output_file = sprintf('skcm-optimal-%d.html', seed.additional + 1), params = list(seed.additional = seed.additional, project = 'skcm.data.2018.09.11', subtract.surv.column = 'days_to_submitted_specimen_dx', n.cores = n.cores, tissue = 'metastatic')) my.render('OptimalVariableSize.Rmd', output_file = sprintf('brca-optimal-%d.html', seed.additional + 1), params = list(seed.additional = seed.additional, project = 'brca.data.2018.09.13', n.cores = n.cores, tissue = 'primary.solid.tumor')) my.render('OptimalVariableSize.Rmd', output_file = sprintf('prad-optimal-%d.html', seed.additional + 1), params = list(seed.additional = seed.additional, project = 'prad.data.2018.10.11', n.cores = n.cores, tissue = 'primary.solid.tumor')) my.render('OptimalVariableSize.Rmd', output_file = sprintf('ucec-optimal-%d.html', seed.additional + 1), params = list(seed.additional = seed.additional, project = 'ucec.data.2018.10.17', n.cores = n.cores, tissue = 'primary.solid.tumor')) my.render('OptimalVariableSize.Rmd', output_file = sprintf('kirc-optimal-%d.html', seed.additional + 1), params = list(seed.additional = seed.additional, project = 'kirc.data.2018.10.17', n.cores = n.cores, tissue = 'primary.solid.tumor')) my.render('OptimalVariableSize.Rmd', output_file = sprintf('luad-optimal-%d.html', seed.additional + 1), params = list(seed.additional = seed.additional, project = 'luad.data.2018.10.17', n.cores = n.cores, tissue = 'primary.solid.tumor')) my.render('OptimalVariableSize.Rmd', output_file = sprintf('lgg-optimal-%d.html', seed.additional + 1), params = list(seed.additional = seed.additional, project = 'lgg.data.2018.10.17', n.cores = n.cores, tissue = 'primary.solid.tumor'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.