new_mut_freq <- function(x) {
tibble::new_tibble(x, class = "mut_freq")
}
#' @export
`[.mut_freq` <- function(x, i, j, drop = FALSE) {
mut_freq_reconstruct(NextMethod())
}
#' @export
`names<-.mut_freq` <- function(x, value) {
mut_freq_reconstruct(NextMethod())
}
#' @export
`$<-.mut_freq` <- function(x, name, value) {
mut_freq_reconstruct(NextMethod())
}
#------------------------------------------------
#' Compute frequency of mutations
#'
#' Generate a table representing the frequency of unique mutations. In order to
#' ensure confidence in the results, a threshold is provided indicating
#' confidence in genotype calls. All data that do not meet this threshold will
#' be removed from the computation.
#'
#' @param data A data frame, data frame extension (e.g. a tibble), or a lazy
#' data frame (e.g. from dbplyr or dtplyr).
#' @param threshold A minimum UMI count which reflects the confidence in the
#' genotype call. Data with a UMI count of less than the threshold will be
#' filtered out from the analysis.
#'
#' @return
#' A [tibble][tibble::tibble-package] with the extra class `mut_freq`. The
#' output has the following columns:
#'
#' * `mutation_name`: The unique mutation sequenced.
#' * `frequency`: The frequency of the mutation.
#'
#' @export
#' @seealso [plot_mutation_frequency()] for plotting the table.
#' @examples
#' # Read example data
#' data <- read_tbl_ref_alt_cov(
#' miplicorn_example("reference_AA_table.csv"),
#' miplicorn_example("alternate_AA_table.csv"),
#' miplicorn_example("coverage_AA_table.csv"),
#' gene == "atp6" | gene == "crt"
#' )
#'
#' # Compute mutation frequency
#' mutation_frequency(data, 5)
mutation_frequency <- function(data, threshold) {
UseMethod("mutation_frequency")
}
#' @export
mutation_frequency.default <- function(data, threshold) {
cli_abort(c(
"Cannot compute mutation frequency with this data object.",
"i" = "Object must be a reference, alternate, coverage table."
))
}
#' @rdname mutation_frequency
#' @export
mutation_frequency.ref_alt_cov_tbl <- function(data, threshold) {
# Ensure table has the column mutation name
if (!"mutation_name" %in% colnames(data)) {
cli_abort("Data needs the column `mutation_name`.")
}
# Filter data to threshold
filtered <- dplyr::filter(
data,
.data$coverage > threshold,
.data$alt_umi_count > threshold | .data$ref_umi_count > threshold
)
# Compute weighted average of the alt umi count
wt_average <- filtered %>%
dplyr::mutate(
alt_umi_count = ifelse(
.data$alt_umi_count < threshold,
0,
.data$alt_umi_count
),
alt_freq = .data$alt_umi_count / .data$coverage
) %>%
dplyr::group_by(.data$mutation_name) %>%
dplyr::summarise(
frequency = sum(.data$alt_freq * .data$coverage) / sum(.data$coverage)
)
# Assign a subclass "mut_freq"
new_mut_freq(wt_average)
}
#------------------------------------------------
#' Plot frequency of mutations
#'
#' Plot the frequency of mutations generated by [mutation_frequency()].
#' The frequency is plotted on the y-axis and the amino acid change is plotted
#' on the x-axis. Data are grouped by the gene on which the mutation took place
#' and coloured according to their groupings.
#'
#' @param data,object,x An object of class `mut_freq`. Derived from the output
#' of [mutation_frequency()].
#' @param ... Other arguments passed to specific methods.
#'
#' @return A [ggplot2][ggplot2::ggplot2-package] object.
#'
#' @export
#' @seealso [mutation_frequency()] for generating the data for plotting.
#' @examples
#' # Read example data
#' data <- read_tbl_ref_alt_cov(
#' miplicorn_example("reference_AA_table.csv"),
#' miplicorn_example("alternate_AA_table.csv"),
#' miplicorn_example("coverage_AA_table.csv"),
#' gene == "atp6" | gene == "crt"
#' )
#'
#' # Compute the mutation frequency
#' frequency <- mutation_frequency(data, 5)
#'
#' # Plot
#' plot(frequency)
plot_mutation_frequency <- function(data) {
if (!inherits(data, "mut_freq")) {
cli_abort(c(
"Data object must be of class `mut_freq`.",
"x" = "Its class{?es} {?is/are} {backtick(class(data))}.",
"i" = "Did you forget to run `mutation_frequency()` first?"
))
}
plot(data)
}
#' @importFrom ggplot2 autoplot
#' @rdname plot_mutation_frequency
#' @export
autoplot.mut_freq <- function(object, ...) {
plot_data <- object %>%
tidyr::drop_na() %>%
dplyr::filter(.data$frequency != 0) %>%
tidyr::extract(
col = .data$mutation_name,
into = c("gene", "aa_change"),
regex = "^(.*)(?=-)[-](.*)"
) %>%
arrange_natural(.data$gene, .data$aa_change)
ggplot2::ggplot(
data = plot_data,
mapping = ggplot2::aes(
x = .data$aa_change,
y = .data$frequency,
fill = .data$gene
)
) +
ggplot2::geom_col() +
ggplot2::labs(
x = "Amino Acid Change",
y = "Frequency",
title = "Frequency of Mutations"
) +
ggplot2::scale_fill_viridis_d(name = "Gene") +
default_theme() +
ggplot2::theme(
axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1)
)
}
#' @importFrom graphics plot
#' @rdname plot_mutation_frequency
#' @export
plot.mut_freq <- function(x, ...) {
print(autoplot(x, ...))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.