scISR performs imputation for single-cell sequencing data. scISR identifies the true dropout values in the scRNA-seq dataset using hyper-geomtric testing approach. Based on the result obtained from hyper-geometric testing, the original dataset is segregated into two including training data and imputable data. Next, training data is used for constructing a generalize linear regression model that is used for imputation on the imputable data.
utils::install.packages('devtools')
devtools::install_github('bangtran365/scISR')
data(scISRExample)
imputed <- scISR(data = scISRExample$dropout)
plotscISR(scISRExample$raw, label = scISRExample$celltype)
plotscISR(scISRExample$dropout, label = scISRExample$celltype)
plotscISR(imputed, label = scISRExample$celltype)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.