Description Usage Arguments Details Value References Examples
Plotting scRNA-seq data to visualize the cell transciptome landscape.
1 |
data |
Input matrix or data frame. Rows represent genes while columns represent samples. |
label |
A vector that contains the cell type labels. |
perplexity |
Number of closed neighbors for each data point. |
This function utilizes the dimension reduction feature of t-SNE package to viusualize high throughput data over two dimensional space.
plotscISR
Return the visualization of the cell populations in the scRNA-seq dataset.
1. Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Load the sample dataset scISRExample
data(scISRExample)
# Perform the imputation
imputed <- scISR(data = scISRExample$dropout)
# Plot the complete data
plot_raw <- plotscISR(scISRExample$raw, label = scISRExample$celltype)
# Plot the dropout data
plot_dropout <- plotscISR(scISRExample$dropout, label = scISRExample$celltype)
# Plot the imputed data
plot_imputed <- plotscISR(imputed, label = scISRExample$celltype)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.