Description Usage Arguments Details Value References Examples
Perform single-cell Imputation using Subspace Regression
1 |
data |
Input matrix or data frame. Rows represent genes while columns represent samples |
ncores |
Seed for reproducibility. Default value is |
scISR performs imputation for single-cell sequencing data. scISR identifies the true dropout values in the scRNA-seq dataset using hyper-geomtric testing approach. Based on the result obtained from hyper-geometric testing, the original dataset is segregated into two subsets including training data and imputable data. Next, training data is used for constructing a generalize linear regression model that is used for imputation on the imputable data.
scISR
returns an imputed single-cell expression matrix where rows represent genes while columns represent samples.
1. Nguyen, T., Tagett, R., Diaz, D., & Draghici, S. (2017). A novel approach for data integration and disease subtyping. Genome research, 27(12), 2025-2039.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Load the sample dataset scISRExample
data(scISRExample)
# Perform the imputation
imputed <- scISR(data = scISRExample$dropout)
# Plot the complete data
plotscISR(scISRExample$raw, label = scISRExample$celltype)
# Plot the dropout data
plotscISR(scISRExample$dropout, label = scISRExample$celltype)
# Plot the imputed data
plotscISR(imputed, label = scISRExample$celltype)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.