tests/testthat/test-benchmark.R

chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
if (nzchar(chk) && chk == "TRUE") {
  # use 2 cores in CRAN/Travis/AppVeyor
  num_cores <- 2L
} else {
  # use all cores in devtools::test()
  num_cores <- parallel::detectCores()
}
library(dplyr)



test_that("univariate benchmark", {
  RNGkind("L'Ecuyer-CMRG")
  set.seed(20)
  relevant_mixture_functions <- list(
    "RGMMBench" = list(name_fonction = emnmix_univariate, list_params = list()),
    "Rmixmod" = list(name_fonction = RGMMBench::em_Rmixmod_univariate, list_params = list()),
    "mixtools" = list(name_fonction = em_mixtools_univariate, list_params = list()),
    "bgmm" = list(name_fonction = em_bgmm_univariate, list_params = list()),
    "mclust" = list(name_fonction = em_mclust_univariate, list_params = list(prior = NULL)),
    "EMCluster" = list(name_fonction = em_EMCluster_univariate, list_params = list()),
    "GMKMcharlie" = list(name_fonction = em_GMKMcharlie_univariate, list_params = list()),
    "flexmix" = list(name_fonction = em_flexmix_univariate, list_params = list())
  )

  univariate_distribution_parameters <- benchmark_univariate_GMM_estimation(
    mixture_functions = relevant_mixture_functions[2],
    initialisation_algorithms = c("kmeans"),
    sigma_values = list("low OVL" = rep(0.3, 2)),
    mean_values = list(c(0, 4)),
    proportions = list("small imbalanced" = c(0.8, 0.2)),
    prop_outliers = c(0), cores = num_cores,
    Nbootstrap = 2, nobservations = c(100)
  )

  # saveRDS(univariate_distribution_parameters,
  #         test_path("results", "univariate_test_distribution.rds"))
  expect_equal(univariate_distribution_parameters, readRDS(test_path("results", "univariate_test_distribution.rds")))
})



test_that("multivariate benchmark", {
  RNGkind("L'Ecuyer-CMRG")
  set.seed(20)
  relevant_mixture_functions <- list(
    "em R" = list(name_fonction = emnmix_multivariate, list_params = list()),
    "Rmixmod" = list(name_fonction = RGMMBench::em_Rmixmod_multivariate, list_params = list()),
    "mixtools" = list(name_fonction = em_mixtools_multivariate, list_params = list()),
    "bgmm" = list(name_fonction = em_bgmm_multivariate, list_params = list()),
    "mclust" = list(name_fonction = em_mclust_multivariate, list_params = list(prior = NULL)),
    "EMCluster" = list(name_fonction = em_EMCluster_multivariate, list_params = list()),
    "GMKMcharlie" = list(name_fonction = em_GMKMcharlie_multivariate, list_params = list()),
    "flexmix" = list(name_fonction = em_flexmix_multivariate, list_params = list())
  )


  corr_sequence <- seq(-0.8, 0.8, 0.2)
  sigma_values <- list()
  for (corr_1 in corr_sequence) {
    for (corr_2 in corr_sequence) {
      sigma_values[[glue::glue("comp_1_corr_{corr_1}_comp_2_{corr_2}")]] <-
        array(c(1, corr_1, corr_1, 1, 1, corr_2, corr_2, 1), dim = c(2, 2, 2))
    }
  }

  multivariate_distribution_parameters <- benchmark_multivariate_GMM_estimation(
    mixture_functions = relevant_mixture_functions[2:3],
    initialisation_algorithms = c("kmeans"), cores = num_cores,
    sigma_values = sigma_values[1:2],
    mean_values = list("small OVL" = matrix(c(0, 2, 2, 0), nrow = 2, ncol = 2)),
    proportions = list("balanced" = c(0.5, 0.5)),
    Nbootstrap = 4, nobservations = c(100)
  )

  # saveRDS(multivariate_distribution_parameters,
  #         test_path("results", "multivariate_test_distribution.rds"))
  original_dist <- readRDS(test_path("results", "multivariate_test_distribution.rds"))
  expect_equal(multivariate_distribution_parameters, original_dist)
})




test_that("computation time in multivariate", {
  skip_on_cran()
  RNGkind("L'Ecuyer-CMRG")
  set.seed(20)
  relevant_mixture_functions <- list(
    "em R" = list(name_fonction = emnmix_multivariate, list_params = list()),
    "Rmixmod" = list(name_fonction = RGMMBench::em_Rmixmod_multivariate, list_params = list()),
    "mixtools" = list(name_fonction = em_mixtools_multivariate, list_params = list()),
    "bgmm" = list(name_fonction = em_bgmm_multivariate, list_params = list()),
    "mclust" = list(name_fonction = em_mclust_multivariate, list_params = list(prior = NULL)),
    "EMCluster" = list(name_fonction = em_EMCluster_multivariate, list_params = list()),
    "GMKMcharlie" = list(name_fonction = em_GMKMcharlie_multivariate, list_params = list()),
    "flexmix" = list(name_fonction = em_flexmix_multivariate, list_params = list())
  )


  corr_sequence <- seq(-0.8, 0.8, 0.2)
  sigma_values <- list()
  for (corr_1 in corr_sequence) {
    for (corr_2 in corr_sequence) {
      sigma_values[[glue::glue("comp_1_corr_{corr_1}_comp_2_{corr_2}")]] <-
        array(c(1, corr_1, corr_1, 1, 1, corr_2, corr_2, 1), dim = c(2, 2, 2))
    }
  }

  multivariate_time_computations <- compute_microbenchmark_multivariate(
    mixture_functions = relevant_mixture_functions[2:3],
    initialisation_algorithms = c("kmeans"),
    sigma_values = sigma_values[1:2],
    mean_values = list("small OVL" = matrix(c(0, 2, 2, 0), nrow = 2, ncol = 2)),
    proportions = list("balanced" = c(0.5, 0.5)),
    Nbootstrap = 4, nobservations = c(100, 200, 500), cores = num_cores
  )

  # saveRDS(multivariate_time_computations,
  #         test_path("results", "multivariate_test_time.rds"))
  # expect_equal(multivariate_time_computations, readRDS(test_path("results", "multivariate_test_time.rds")))
})

test_that("univariate time computation", {
  skip_on_cran()
  RNGkind("L'Ecuyer-CMRG")
  set.seed(20)
  relevant_mixture_functions <- list(
    "RGMMBench" = list(name_fonction = emnmix_univariate, list_params = list()),
    "Rmixmod" = list(name_fonction = RGMMBench::em_Rmixmod_univariate, list_params = list()),
    "mixtools" = list(name_fonction = em_mixtools_univariate, list_params = list()),
    "bgmm" = list(name_fonction = em_bgmm_univariate, list_params = list()),
    "mclust" = list(name_fonction = em_mclust_univariate, list_params = list(prior = NULL)),
    "EMCluster" = list(name_fonction = em_EMCluster_univariate, list_params = list()),
    "GMKMcharlie" = list(name_fonction = em_GMKMcharlie_univariate, list_params = list()),
    "flexmix" = list(name_fonction = em_flexmix_univariate, list_params = list())
  )

  univariate_time_computations <- compute_microbenchmark_univariate(
    mixture_functions = relevant_mixture_functions[2:3],
    initialisation_algorithms = c("kmeans"),
    sigma_values = list("low OVL" = rep(0.3, 2)),
    mean_values = list(c(0, 4)),
    proportions = list(
      "balanced" = c(0.5, 0.5),
      "small imbalanced" = c(0.8, 0.2)
    ),
    prop_outliers = c(0), cores = num_cores,
    Nbootstrap = 4, nobservations = c(100, 200)
  )

  # saveRDS(univariate_time_computations,
  #         test_path("results", "univariate_test_time.rds"))
  expect_equal(univariate_time_computations, readRDS(test_path("results", "univariate_test_time.rds")))
})
bastienchassagnol-servier/RGMMBench documentation built on April 26, 2023, 6:38 p.m.