Description Usage Arguments Value Examples
Impute missing data in data frame
1 2 3 4 5 6 7 8 9 10 |
fitted |
A fitted model |
data |
A data frame, contains missing data, each row is a time value and observations, structure is the same as learning data before process |
continuous_variables |
Column names of continuous variables |
discrete_variables |
Column names of discrete variables |
time_column |
Column name of "data", which values is time stamp, default is NULL |
normalize_type |
Normalization type for continuous variables, "mean_normalization", "min_max" or "standardisation", default is NULL |
normalizers |
Normalize parameters, default is NULL |
A full filled data frame
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | library(wrmbn)
data("data")
data("preprocessed")
data("trained_models")
head(data)
continuous_variables <- preprocessed$continuous_variables
discrete_variables <- preprocessed$discrete_variables
desire_layers <- preprocessed$desire_layers
time_column <- "date"
normalize_type <- preprocessed$normalize_tye
normalizers <- preprocessed$normalizers
fitted <- trained_models$hc$fitted
imputed_data <- impute_missing_data(fitted, data, continuous_variables, discrete_variables,
time_column, normalize_type, normalizers, debug = FALSE)
head(imputed_data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.