Description Usage Arguments Value Examples
Preprocess time series data prepare for learning bayesian network
1 2 3 4 5 6 7 8 9 10 11 | preprocess_timeseries_data(
data,
type,
time_column,
continuous_variable_names,
discrete_variable_names,
desire_layers,
normalize_type = NULL,
quantile_number = -1,
na_omit = TRUE
)
|
data |
A data frame, each row is a time value and observations |
type |
Bayesian network type, "discrete" or "continuous" |
time_column |
Column name of "data", which values is time stamp |
continuous_variable_names |
Column names of continuous variables |
discrete_variable_names |
Column names of discrete variables |
desire_layers |
Number layers of bayesian network, at least is 2 |
normalize_type |
Normalization type for continuous variables, "mean_normalization", "min_max" or "standardisation" |
quantile_number |
Number of quantile level for type "discrete" |
na_omit |
If true, NA/NaN values will be omit after preprocess |
An object with pre-processsed data and preprocess parameters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | library(wrmbn)
data("data")
data("structure")
uncorelate_node <- c("MTL", "QMX", "HCL", "CMB", "CTL", "CDX", "CBT")
for(node in uncorelate_node) {
data <- data[, -which(colnames(data) == node)]
}
for(node in uncorelate_node) {
if(length(which(structure$from == node)) > 0) {
structure <- structure[-which(structure$from == node), ]
} else if(length(which(structure$to == node)) > 0) {
structure <- structure[-which(structure$to == node), ]
}
}
type <- "continuous"
time_column <- "date"
continuous_variable_names <- setdiff(colnames(data), time_column)
discrete_variable_names <- c()
desire_layers <- 3
normalize_type <- "mean_normalization"
preprocessed <- preprocess_timeseries_data(data, type, time_column,
continuous_variable_names, discrete_variable_names, desire_layers,
normalize_type, quantile_number = -1, na_omit = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.