Description Usage Arguments Value Examples
Preprocess time series data prepare for test learned bayesian network
1 2 3 4 5 6 7 8 9 | preprocess_test_data(
data,
continuous_variables,
discrete_variables,
desire_layers,
time_column = NULL,
normalize_type = NULL,
normalizers = NULL
)
|
data |
A data frame, each row is a time value and observations |
desire_layers |
Number layers of bayesian network, at least is 2 |
time_column |
Column name of "data", which values is time stamp, default is NULL |
normalize_type |
Normalization type for continuous variables, "mean_normalization", "min_max" or "standardisation", default is NULL |
normalizers |
Normalize parameters, default is NULL |
continuous_variable_names |
Column names of continuous variables |
discrete_variable_names |
Column names of discrete variables |
An list object, each element is processed data frame
1 2 3 4 5 6 7 8 9 10 11 | library(wrmbn)
data("preprocessed")
head(data)
continuous_variables <- preprocessed$continuous_variables
discrete_variables <- preprocessed$discrete_variables
desire_layers <- preprocessed$desire_layers
time_column <- "date"
normalize_type <- preprocessed$normalize_tye
normalizers <- preprocessed$normalizers
test_data <- preprocess_test_data(data, continuous_variables, discrete_variables, desire_layers,
time_column, normalize_type, normalizers)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.