SparseNeuroVec-class | R Documentation |
A class representing a sparse four-dimensional brain image, optimized for efficient storage and access of large, sparse neuroimaging data.
Constructs a SparseNeuroVec object for efficient representation and manipulation of sparse neuroimaging data with many zero or missing values.
SparseNeuroVec(data, space, mask, label = "")
data |
A matrix or a 4-D array containing the neuroimaging data. The dimensions of the data should be consistent with the dimensions of the provided NeuroSpace object and mask. |
space |
A NeuroSpace object representing the dimensions and voxel spacing of the neuroimaging data. |
mask |
A 3D array, 1D vector of type logical, or an instance of type LogicalNeuroVol, which specifies the locations of the non-zero values in the data. |
label |
Optional character string providing a label for the vector |
SparseNeuroVec objects store data in a compressed format, where only non-zero
values are retained. This approach significantly reduces memory usage for
sparse brain images. The class leverages the mask and mapping from its parent
class AbstractSparseNeuroVec
to efficiently manage the
spatial structure of the data.
A SparseNeuroVec object, containing the sparse neuroimaging data, mask, and associated NeuroSpace information.
data
A matrix
where each column represents a non-zero vector
spanning the fourth dimension (e.g., time series for each voxel). Rows
correspond to voxels in the sparse domain defined by the mask.
SparseNeuroVec
inherits from:
NeuroVec
: Base class for 4D brain images
AbstractSparseNeuroVec
: Provides sparse representation framework
ArrayLike4D
: Interface for 4D array-like operations
AbstractSparseNeuroVec-class
for the parent sparse representation class.
NeuroVec-class
for the base 4D brain image class.
## Not run:
# Create a sparse 4D brain image
mask <- LogicalNeuroVol(array(runif(64*64*32) > 0.7, dim=c(64,64,32)))
data <- matrix(rnorm(sum(mask) * 100), nrow=sum(mask), ncol=100)
sparse_vec <- SparseNeuroVec(data=data, mask=mask, space=NeuroSpace(dim=c(64,64,32)))
# Access a subset of the data
subset <- sparse_vec[,,, 1:10]
## End(Not run)
bspace <- NeuroSpace(c(10,10,10,100), c(1,1,1))
mask <- array(rnorm(10*10*10) > .5, c(10,10,10))
mat <- matrix(rnorm(sum(mask)), 100, sum(mask))
svec <- SparseNeuroVec(mat, bspace, mask)
length(indices(svec)) == sum(mask)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.