This vignette demonstrates how to display 3D brain surface meshes using the rgl plotting tools provided by the neurosurf package, primarily through the plot() method which utilizes the view_surface() function internally.

Setup and Loading Data

First, we set up knitr options to embed rgl plots directly into the HTML output using WebGL and prevent standalone rgl windows from popping up during knitting. We then load example left and right hemisphere white matter surfaces included with the package and prepare some data (smoothed geometry, curvature, random values) for the examples.

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.width = 7,        # Default figure width
  fig.height = 5,       # Default figure height
  rgl.newwindow = FALSE, # Prevent new RGL windows for chunks
  webgl = TRUE          # Use WebGL for embedding
)
rgl::setupKnitr()       # Setup rgl hook for knitr

library(rgl)
library(neuroim2)
library(neurosurf)

# Load example surfaces
white_lh_asc <- system.file("extdata", "std.8_lh.smoothwm.asc", package="neurosurf")
white_rh_asc <- system.file("extdata", "std.8_rh.smoothwm.asc", package="neurosurf")
white_lh <- read_surf(white_lh_asc)
white_rh <- read_surf(white_rh_asc)

# Prepare data for examples
white_lh_smooth <- smooth(white_lh, type="HCLaplace", delta=.2, iteration=5)
curv_lh <- curvature(white_lh_smooth)
set.seed(123) # for reproducibility
random_vals <- rnorm(length(nodes(white_lh_smooth)))

Basic Surface Plotting

The simplest way to display a SurfaceGeometry object is using the plot() method. By default, it renders the surface with a light gray background. We can specify a viewpoint.

# Plot the smoothed left hemisphere from a lateral viewpoint
plot(white_lh_smooth, viewpoint="lateral")
rglwidget()

Coloring Based on Curvature

Surface curvature helps distinguish gyri (outward folds) from sulci (inward folds). The curvature() function calculates this, and curv_cols() provides a simple binary color mapping (default: light gray for positive/gyri, dark gray for negative/sulci). We can pass these colors to the bgcol argument of plot() to color the surface background.

# Calculate curvature colors
curv_colors <- curv_cols(curv_lh)

# Plot with curvature background from a medial viewpoint
plot(white_lh_smooth, bgcol = curv_colors, viewpoint="medial")
rglwidget()

Overlaying Data Values

Often, we want to visualize data mapped onto the surface vertices (e.g., activation values, thickness). We can pass a vector of values to the vals argument. The cmap argument specifies the color map, and irange defines the data range to map onto the colormap. Values outside irange are clamped to the minimum or maximum color.

# Overlay random data using a rainbow colormap
# Map data range from -2 to 2 onto the colormap
plot(white_lh_smooth, vals = random_vals, cmap = rainbow(256),
     irange = c(-2, 2), viewpoint="lateral")
rglwidget()

Thresholding Data Visualization

The thresh argument (a vector of two values, c(lower, upper)) can be used with vals to make parts of the surface transparent. Vertices where the corresponding value in vals is outside this range (i.e., less than lower or greater than upper) are rendered transparently. This is useful for focusing on specific value ranges.

# Same data overlay as above, but make values between -1 and 1 transparent
plot(white_lh_smooth, vals = random_vals, cmap = rainbow(256),
     irange = c(-2, 2), thresh = c(-1, 1), viewpoint="lateral")
rglwidget()

Note: Thresholding makes values outside the specified thresh range transparent. This might seem counter-intuitive if you expect it to show only values within the range. Be mindful of this behavior.

Direct Vertex Coloring

Instead of mapping data values to a colormap, you can provide a vector of specific hex color codes directly to the vert_clrs argument. This overrides vals and cmap. The vector length must match the number of vertices.

# Color vertices based on their x-coordinate (e.g., red for positive x, blue for negative)
x_coords <- coords(white_lh_smooth)[, 1]
vertex_colors <- ifelse(x_coords > median(x_coords), "#FF0000", "#0000FF") # Red/Blue

plot(white_lh_smooth, vert_clrs = vertex_colors, viewpoint="ventral")
rglwidget()

Controlling Transparency

The alpha argument controls the overall transparency of the surface, ranging from 0 (fully transparent) to 1 (fully opaque).

# Plot the surface with 60% opacity (40% transparent)
plot(white_lh_smooth, vals = random_vals, cmap = heat.colors(256),
     irange = c(-2, 2), alpha = 0.6, viewpoint="posterior")
rglwidget()

Adjusting Lighting and Material

The appearance of the surface is affected by lighting. The specular argument controls the color of specular highlights (shininess). Setting it to "black" creates a matte appearance.

# Plot with a matte finish (no specular highlights)
plot(white_lh_smooth, vals = random_vals, cmap = topo.colors(256),
     irange = c(-2, 2), specular = "black", viewpoint="lateral")
rglwidget()

Changing Viewpoints

The viewpoint argument can be set to common anatomical views like "lateral", "medial", "ventral", or "posterior". The function automatically selects the correct left/right version based on the surface's hemisphere information (surf@hemi).

# Display multiple viewpoints using rgl's layout functions
mfrow3d(2, 2, sharedMouse = TRUE)
plot(white_lh_smooth, viewpoint="lateral")
plot(white_lh_smooth, viewpoint="medial")
plot(white_lh_smooth, viewpoint="ventral")
plot(white_lh_smooth, viewpoint="posterior")
rglwidget()

Displaying Two Hemispheres

You can plot multiple surfaces in the same rgl scene. When plotting the second surface, use new_window = FALSE to add it to the existing window. You might need to use the offset argument to position the second hemisphere correctly relative to the first.

# Smooth the right hemisphere and get its curvature
white_rh_smooth <- smooth(white_rh, type="HCLaplace", delta=.2, iteration=5)
curv_rh <- curvature(white_rh_smooth)

# Plot LH with curvature background (opens the scene)
plot(white_lh_smooth, bgcol = curv_cols(curv_lh), viewpoint="lateral")

# Plot RH in the same scene, slightly offset along the x-axis
# Use new_window=FALSE to add to the current plot
plot(white_rh_smooth, bgcol = curv_cols(curv_rh), viewpoint="lateral",
     new_window = FALSE, offset = c(5, 0, 0))

# Adjust the overall view if needed (optional)
# view3d(theta = 0, phi = 0, zoom = 0.8)

rglwidget()

Adding Spheres to the Surface

The spheres argument allows you to draw spherical markers at specified coordinates. It requires a data frame with columns x, y, z, and radius. An optional color column can specify colors for each sphere.

# Define coordinates for some spherical markers
peak_coords <- data.frame(
  x = coords(white_lh_smooth)[c(100, 500, 1000), 1], # Example vertex coordinates
  y = coords(white_lh_smooth)[c(100, 500, 1000), 2],
  z = coords(white_lh_smooth)[c(100, 500, 1000), 3],
  radius = c(3, 4, 2.5),
  color = c("yellow", "cyan", "magenta")
)

# Plot the surface and add the spheres
plot(white_lh_smooth, viewpoint = "lateral", spheres = peak_coords)
rglwidget()

Plotting Other NeuroSurface Objects

The plot() method also works for other classes like NeuroSurface, LabeledNeuroSurface, and ColorMappedNeuroSurface. These objects already contain data and potentially color mapping information. The plot method extracts this information and passes the appropriate arguments (like vals, cmap, irange, thresh, vert_clrs) to the underlying view_surface function.

# Create a NeuroSurface object with the random data
nsurf <- NeuroSurface(white_lh_smooth, indices=1:length(random_vals), data=random_vals)

# Plot the NeuroSurface - uses data stored within the object
# We can still override or add parameters like cmap, irange, thresh, alpha etc.
plot(nsurf, cmap=heat.colors(128), irange=c(-2.5, 2.5), viewpoint="lateral")
rglwidget()

Showing an activation map overlaid on a surface mesh

We will plot surface in a row of 3. We generate a set of random values and then smooth those values along the surface to approximate a realistic activation pattern.

In the first column we display all the values in the map. Next we threshold all values between (-2,2). In the last panel we additionally add a cluster size threshold of 30 nodes.

open3d()
mfrow3d(1, 3, byrow = TRUE)
vals <- rnorm(length(nodes(white_surf2)))
surf <- NeuroSurface(white_surf2, indices=1:length(vals), data=vals)
ssurf <- smooth(surf)
p <- plot(geometry(ssurf), vals=values(ssurf), cmap=rainbow(100), irange=c(-2,2))

next3d()
comp <- conn_comp(ssurf, threshold=c(-.2,.2))
p2 <- plot(geometry(ssurf), vals=values(ssurf), cmap=rainbow(100), irange=c(-2,2), thresh=c(-.2, .2))

next3d()
csurf <- cluster_threshold(ssurf, size=30, threshold=c(-.2,.2))
p2 <- plot(csurf, cmap=rainbow(100), irange=c(-2,2), thresh=c(-.2, .2))
rglwidget()

Showing two hemisperes in same scene

open3d()

curv_lh <- curvature(white_surf2)
white_rh_surf2 <- smooth(white_rh_surf, type="HCLaplace", delta=.2, iteration=5)
curv_rh <- curvature(white_rh_surf2)

p <- plot(white_surf2, bgcol=curv_cols(curv_lh), viewpoint="posterior")
p <- plot(white_rh_surf2,bgcol=curv_cols(curv_rh), viewpoint="posterior")
rglwidget()

Interactive Surface Visualization with plot_js

We can use the plot_js function to create an interactive 3D visualization of our surface using HTMLWidgets. This allows for a more dynamic viewing experience directly in the HTML output.

# Create an interactive 3D visualization of white_surf1
surfwidget(white_surf1, width = "100%", height = "400px")

The widget accepts an optional curvature argument. If omitted it will be derived from the geometry when white_surf1 is a SurfaceGeometry object:

surfwidget(white_surf1, curvature = curv_lh)

=======



bbuchsbaum/neurosurf documentation built on June 10, 2025, 8:22 p.m.