# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Calculate all fasstr annual statistics
#'
#' @description Calculates annual statistics from all annual \code{fasstr} functions from a daily streamflow data set.
#' Data is ideally long-term and continuous with minimal missing/seasonal data as annual statistics are calculated.
#' Calculates statistics from all values, unless specified. Returns a tibble with statistics.
#' Data calculated using the following functions:
#' \itemize{
#' \item{\code{calc_annual_stats()}}
#' \item{\code{calc_annual_lowflows()}}
#' \item{\code{calc_annual_cumulative_stats()}}
#' \item{\code{calc_annual_flow_timing()}}
#' \item{\code{calc_annual_normal_days()}}
#' \item{\code{calc_monthly_stats()}}
#' }
#'
#' @inheritParams calc_annual_stats
#' @inheritParams calc_annual_cumulative_stats
#' @inheritParams calc_annual_normal_days
#' @param months Numeric vector of months to include in analysis. For example, \code{3} for March, \code{6:8} for Jun-Aug or
#' \code{c(10:12,1)} for first four months (Oct-Jan) when \code{water_year_start = 10} (Oct). Default summarizes all
#' months (\code{1:12}). If not \code{1:12}, seasonal total yield and volumetric flows will not be included.
#' @param annual_percentiles Numeric vector of percentiles to calculate annually. Set to \code{NA} if none required. Used for
#' \code{calc_annual_stats()} function. Default \code{c(10,90)}.
#' @param monthly_percentiles Numeric vector of percentiles to calculate monthly for each year. Set to \code{NA} if none required.
#' Used for \code{calc_monthly_stats()} function. Default \code{c(10,20)}.
#' @param stats_days Numeric vector of the number of days to apply a rolling mean on basic stats. Default \code{c(1)}.
#' Used for \code{calc_annual_stats()} and \code{calc_monthly_stats()} functions.
#' @param stats_align Character string identifying the direction of the rolling mean on basic stats from the specified date, either by
#' the first (\code{'left'}), last (\code{'right'}), or middle (\code{'center'}) day of the rolling n-day group of observations.
#' Default \code{'right'}. Used for \code{calc_annual_stats()}, \code{calc_monthly_stats()}, and \code{calc_annual_normal_days()}
#' functions.
#' @param lowflow_days Numeric vector of the number of days to apply a rolling mean on low flow stats. Default \code{c(1,3,7,30)}.
#' Used for \code{calc_lowflow_stats()} function.
#' @param lowflow_align Character string identifying the direction of the rolling mean on low flow stats from the specified date,
#' either by the first (\code{'left'}), last (\code{'right'}), or middle (\code{'center'}) day of the rolling n-day group of
#' observations. Default \code{'right'}. Used for \code{calc_lowflow_stats()} function.
#' @param timing_percent Numeric vector of percents of annual total flows to determine dates. Used for \code{calc_annual_flow_timing()}
#' function. Default \code{c(25,33.3,50,75)}.
#' @param allowed_missing_annual Numeric value between 0 and 100 indicating the \strong{percentage} of missing dates allowed to be
#' included to calculate an annual statistic (0 to 100 percent). If \code{'ignore_missing = FALSE'} then it defaults to \code{0}
#' (zero missing dates allowed), if \code{'ignore_missing = TRUE'} then it defaults to \code{100} (any missing dates allowed);
#' consistent with \code{ignore_missing} usage. Supersedes \code{ignore_missing} when used. Only for annual means, percentiles,
#' minimums, and maximums.
#' @param allowed_missing_monthly Numeric value between 0 and 100 indicating the \strong{percentage} of missing dates allowed to be
#' included to calculate a monthly statistic (0 to 100 percent). If \code{'ignore_missing = FALSE'} then it defaults to \code{0}
#' (zero missing dates allowed), if \code{'ignore_missing = TRUE'} then it defaults to \code{100} (any missing dates allowed);
#' consistent with \code{ignore_missing} usage. Supersedes \code{ignore_missing} when used.Only for monthly means, percentiles,
#' minimums, and maximums.
#'
#' @return A tibble data frame with column "Year" and then 107 (default) variables from the fasstr annual functions.
#' See listed functions above for default variables. Transposing data creates a column of "Statistics" and subsequent
#' columns for each year selected.
#'
#' @seealso \code{\link{calc_annual_stats}},
#' \code{\link{calc_annual_lowflows}},
#' \code{\link{calc_annual_cumulative_stats}},
#' \code{\link{calc_annual_flow_timing}},
#' \code{\link{calc_monthly_stats}},
#' \code{\link{calc_annual_normal_days}}
#'
#' @examples
#' \dontrun{
#'
#' # Working examples:
#'
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Calculate all annual statistics from this package with default arguments
#' calc_all_annual_stats(station_number = "08NM116")
#'
#' # Calculate all annual statistics from this package with default arguments
#' # with some default arguments shown to customize metrics
#' calc_all_annual_stats(station_number = "08NM116",
#' annual_percentiles = c(10,90),
#' monthly_percentiles = c(10,20),
#' stats_days = 1,
#' stats_align = "right",
#' lowflow_days = c(1,3,7,30),
#' lowflow_align = "right",
#' timing_percent = c(25,33,50,75),
#' normal_percentiles = c(25,75))
#'
#' }
#' }
#' @export
calc_all_annual_stats <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
basin_area,
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
annual_percentiles = c(10,90),
monthly_percentiles = c(10,20),
stats_days = 1,
stats_align = "right",
lowflow_days = c(1,3,7,30),
lowflow_align = "right",
timing_percent = c(25,33,50,75),
normal_percentiles = c(25,75),
transpose = FALSE,
complete_years = FALSE,
ignore_missing = FALSE,
allowed_missing_annual = ifelse(ignore_missing,100,0),
allowed_missing_monthly = ifelse(ignore_missing,100,0)){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(basin_area)) {
basin_area <- NA
}
water_year_checks(water_year_start)
years_checks(start_year, end_year, exclude_years)
logical_arg_check(transpose)
logical_arg_check(ignore_missing)
numeric_range_checks(annual_percentiles)
numeric_range_checks(monthly_percentiles)
stats_days_checks(stats_days, stats_align)
lowflow_days_checks(lowflow_days, lowflow_align)
numeric_range_checks(timing_percent)
normal_percentiles_checks(normal_percentiles)
sort(normal_percentiles)
months_checks(months)
allowed_missing_checks(allowed_missing_annual, ignore_missing)
allowed_missing_checks(allowed_missing_monthly, ignore_missing)
logical_arg_check(complete_years)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data,
station_number = station_number)
# Save the original columns (to check for STATION_NUMBER col at end) and ungroup if necessary
orig_cols <- names(flow_data)
flow_data <- dplyr::ungroup(flow_data)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## CALCULATE STATISTICS
## --------------------
annual_stats <- suppressWarnings(calc_annual_stats(data = flow_data,
percentiles = annual_percentiles,
roll_days = stats_days,
roll_align = stats_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
complete_years = complete_years,
ignore_missing = ignore_missing,
allowed_missing = allowed_missing_annual))
# Gather to name all columns with CY or WY for calendar or water year
annual_stats <- tidyr::gather(annual_stats, Stat, Value, 3:ncol(annual_stats))
annual_stats <- dplyr::mutate(annual_stats, Stat = paste0("Annual_", Stat))
annual_stats <- tidyr::spread(annual_stats, Stat, Value)
lowflow_stats <- suppressWarnings(calc_annual_lowflows(data = flow_data,
roll_days = lowflow_days,
roll_align = lowflow_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
complete_years = complete_years,
ignore_missing = ignore_missing,
allowed_missing = allowed_missing_annual))
lowflow_stats <- dplyr::select(lowflow_stats, -dplyr::contains("Date"))
totalQ_stats <- suppressWarnings(calc_annual_cumulative_stats(data = flow_data,
use_yield = FALSE,
basin_area = NA,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
include_seasons = all(1:12 %in% months),
complete_years = complete_years))
totalyield_stats <- suppressWarnings(calc_annual_cumulative_stats(data = flow_data,
use_yield = TRUE,
basin_area = basin_area,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
include_seasons = all(1:12 %in% months),
complete_years = complete_years))
timing_stats <- suppressWarnings(calc_annual_flow_timing(data = flow_data,
percent_total = timing_percent,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months))
timing_stats <- dplyr::select(timing_stats, STATION_NUMBER, Year, dplyr::contains("DoY"))
month_stats <- suppressWarnings(calc_monthly_stats(data = flow_data,
percentiles = monthly_percentiles,
roll_days = stats_days,
roll_align = stats_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
spread = TRUE,
complete_years = complete_years,
ignore_missing = ignore_missing,
allowed_missing = allowed_missing_monthly))
normals_stats <- suppressWarnings(calc_annual_normal_days(data = flow_data,
normal_percentiles = normal_percentiles,
roll_days = stats_days,
roll_align = stats_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months))
## COMBINE ALL STATS
## -----------------
# Create the megazord
all_stats <- merge(annual_stats, lowflow_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
all_stats <- merge(all_stats, totalQ_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
all_stats <- merge(all_stats, totalyield_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
all_stats <- merge(all_stats, timing_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
all_stats <- merge(all_stats, normals_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
all_stats <- merge(all_stats, month_stats, by = c("STATION_NUMBER", "Year"), all = TRUE)
# Gather to name all columns with CY or WY for calendar or water year
all_stats <- tidyr::gather(all_stats, Stat, Value, 3:ncol(all_stats))
#all_stats <- dplyr::mutate(all_stats, Stat = paste0(ifelse(water_year, paste("WY_"), paste("CY_")), Stat))
# Spread back using the same order
col_order <- c("STATION_NUMBER", "Year", unique(all_stats$Stat))
all_stats <- tidyr::spread(all_stats, Stat, Value)
all_stats <- all_stats[, col_order]
# Remove excluded years
all_stats <- dplyr::filter(all_stats, Year >= start_year & Year <= end_year)
all_stats[all_stats$Year %in% exclude_years, -(1:2)] <- NA
# Give warning if any NA values or no basin areas
missing_test <- dplyr::filter(all_stats, !(Year %in% exclude_years))
if ( anyNA(dplyr::select(missing_test, -dplyr::contains("Yield"))) &
all(is.na(dplyr::select(missing_test, dplyr::contains("Yield")))))
warning("No basin area values provided or extracted from HYDAT, and one or more calculations included missing values and NA's were produced. Provide a basin_area if desired and/or filter data for complete years or months, or use to ignore_missing = TRUE to ignore missing values.", call. = FALSE)
if ( !anyNA(dplyr::select(missing_test, -dplyr::contains("Yield"))) &
all(is.na(dplyr::select(missing_test, dplyr::contains("Yield")))))
warning("No basin area values provided or extracted from HYDAT and NA's were produced for all 'Yield' calculations. Use basin_area argument to provide one if desired.", call. = FALSE)
if ( anyNA(missing_test[,3:ncol(missing_test)]) &
!all(is.na(dplyr::select(missing_test, dplyr::contains("Yield")))))
warning(paste0("One or more calculations included missing values and NA's were produced. If desired, filter data for complete years or months,",
" or use the 'ignore_missing' or 'allowed_missing_annual' and `allowed_missing_monthly` arguments."), call. = FALSE)
# If transpose if selected, switch columns and rows
if (transpose) {
options(scipen = 999)
# Get list of columns to order the Statistic column after transposing
stat_levels <- names(all_stats[-(1:2)])
# Transpose the columns for rows
all_stats <- tidyr::gather(all_stats, Statistic, Value, -STATION_NUMBER, -Year)
all_stats <- tidyr::spread(all_stats, Year, Value)
# Order the columns
all_stats$Statistic <- factor(all_stats$Statistic, levels = stat_levels)
all_stats <- dplyr::arrange(all_stats, STATION_NUMBER, Statistic)
}
# Recheck if station_number/grouping was in original flow_data and rename or remove as necessary
if(as.character(substitute(groups)) %in% orig_cols) {
names(all_stats)[names(all_stats) == "STATION_NUMBER"] <- as.character(substitute(groups))
} else {
all_stats <- dplyr::select(all_stats, -STATION_NUMBER)
}
dplyr::as_tibble(all_stats)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.