# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Calculate annual timing of flows
#'
#' @description Calculates the timing (day of year and date) of portions of total annual flow of daily flow
#' values from a daily streamflow data set. Calculates statistics from all values from complete years, unless specified.
#' Returns a tibble with statistics.
#'
#' @inheritParams calc_annual_stats
#' @param percent_total Numeric vector of percents of total annual flows to determine dates. Default \code{c(25,33.3,50,75)}.
#'
#' @references
#' \itemize{
#' \item{Barnett, T.P., Pierce, D.W., Hidalgo, H.G., Bonfils, C., Santer, B.D., Das, T., Bala, G., Wood, A.W.,
#' Nozawa, T., Mirin, A.A., Cayan, D.R., Dettinger, M.D., 2008. Human-Induced Clanges in the Hydrology of
#' the Western United States. Science 319, 1080-1083.}
#' }
#'
#'
#' @return A tibble data frame with the following columns:
#' \item{Year}{calendar or water year selected}
#' \item{DoY_'n'pct_TotalQ}{day of year for each n-percent of total volumetric discharge}
#' \item{Date_'n'pct_TotalQ}{date (YYYY-MM-DD) for each n-percent of total volumetric discharge}
#' Default columns:
#' \item{DoY_25pct_TotalQ}{day of year of 25-percent of total volumetric discharge}
#' \item{Date_25pct_TotalQ}{date (YYYY-MM-DD) of 25-percent of total volumetric discharge}
#' \item{DoY_33.3pct_TotalQ}{day of year of 33.3-percent of total volumetric discharge}
#' \item{Date_33.3pct_TotalQ}{date (YYYY-MM-DD) of 33.3-percent of total volumetric discharge}
#' \item{DoY_50pct_TotalQ}{day of year of 50-percent of total volumetric discharge}
#' \item{Date_50pct_TotalQ}{date (YYYY-MM-DD) of 50-percent of total volumetric discharge}
#' \item{DoY_75pct_TotalQ}{day of year of 75-percent of total volumetric discharge}
#' \item{Date_75pct_TotalQ}{date (YYYY-MM-DD) of 75-percent of total volumetric discharge}
#' Transposing data creates a column of 'Statistics' (just DoY, not Date values) and subsequent columns for each year selected.
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Calculate annual flow timings with default percent of annual totals
#' calc_annual_flow_timing(station_number = "08NM116")
#'
#' # Calculate annual flow timings with custom percent of annual totals
#' calc_annual_flow_timing(station_number = "08NM116",
#' percent_total = 50)
#'
#' }
#' @export
calc_annual_flow_timing <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
percent_total = c(25, 33.3, 50, 75),
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
transpose = FALSE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
numeric_range_checks(percent_total)
water_year_checks(water_year_start)
years_checks(start_year, end_year, exclude_years)
months_checks(months)
logical_arg_check(transpose)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data,
station_number = station_number)
# Save the original columns (to check for STATION_NUMBER col at end) and ungroup if necessary
orig_cols <- names(flow_data)
flow_data <- dplyr::ungroup(flow_data)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## PREPARE FLOW DATA
## -----------------
# Fill in the missing dates and the add the date variables again
# Fill missing dates, add date variables, and add WaterYear and DOY
flow_data <- analysis_prep(data = flow_data,
water_year_start = water_year_start)
flow_data <- dplyr::filter(flow_data, Month %in% months)
flow_data <- add_cumulative_volume(flow_data, water_year_start = water_year_start,
months = months)
# Filter for the selected year (remove excluded years after)
flow_data <- dplyr::filter(flow_data, WaterYear >= start_year & WaterYear <= end_year)
# Stop if all data is NA
no_values_error(flow_data$Cumul_Volume_m3)
## CALCULATE STATISTICS
## --------------------
# Loop through percents
timing_stats <- dplyr::summarize(dplyr::group_by(flow_data, STATION_NUMBER, WaterYear))
for (percent in unique(percent_total)) {
timing_pcnt <- dplyr::summarize(dplyr::group_by(flow_data, STATION_NUMBER, WaterYear),
TOTALQ_DAY = DayofYear[ match(TRUE, Cumul_Volume_m3 > percent / 100 *
((mean(Value, na.rm = TRUE)) * length(Value) * 60 * 60 * 24))],
TOTALQ_DATE = Date[ match(TRUE, Cumul_Volume_m3 > percent / 100 *
((mean(Value, na.rm = TRUE)) * length(Value) * 60 * 60 * 24))])
names(timing_pcnt)[names(timing_pcnt) == "TOTALQ_DAY"] <- paste0("DoY_", percent, "pct_TotalQ")
names(timing_pcnt)[names(timing_pcnt) == "TOTALQ_DATE"] <- paste0("Date_", percent, "pct_TotalQ")
timing_stats <- merge(timing_stats, timing_pcnt, by = c("STATION_NUMBER", "WaterYear"), all = TRUE)
}
timing_stats <- dplyr::rename(timing_stats, Year = WaterYear)
# Make excluded years data NA
if(as.character(substitute(groups)) %in% orig_cols) {
timing_stats[timing_stats$Year %in% exclude_years, -(1:2)] <- NA
} else {
timing_stats[timing_stats$Year %in% exclude_years, -1] <- NA
}
# If transpose if selected, switch columns and rows
if (transpose) {
timing_stats <- dplyr::select(timing_stats, STATION_NUMBER, Year, dplyr::contains("DoY"))
col_names <- names(timing_stats[-(1:2)])
timing_stats <- tidyr::gather(timing_stats, Statistic, Value, -Year, -STATION_NUMBER)
timing_stats <- tidyr::spread(timing_stats, Year, Value)
}
# Give warning if any NA values
if (!transpose) {
missing_test <- dplyr::filter(timing_stats, !(Year %in% exclude_years))
missing_values_warning(missing_test[, 3:ncol(missing_test)])
} else {
missing_test <- dplyr::select(timing_stats, -dplyr::one_of(as.character(exclude_years)))
missing_values_warning(missing_test[, 3:ncol(missing_test)])
}
# Recheck if station_number was in original flow_data and rename or remove as necessary
if(as.character(substitute(groups)) %in% orig_cols) {
names(timing_stats)[names(timing_stats) == "STATION_NUMBER"] <- as.character(substitute(groups))
} else {
timing_stats <- dplyr::select(timing_stats, -STATION_NUMBER)
}
dplyr::as_tibble(timing_stats)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.