# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Calculate annual days above and below normal
#'
#' @description
#'
#' This function has been superseded by the \code{calc_annual_normal_days()} function.
#'
#' Calculates the number of days per year outside of the 'normal' range (typically between 25 and 75th percentiles) for
#' each day of the year. Upper and lower-range percentiles are calculated for each day of the year of from all years, and then each
#' daily flow value for each year is compared. All days above or below the normal range are included. Analysis methodology is based on
#' Environment and Climate Change Canada's
#' \href{https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/water-quantity-canadian-rivers.html}{Water Quantity indicator}
#' from the Canadian Environmental Sustainability Indicators. Calculates statistics from all values from complete years, unless
#' specified. Returns a tibble with statistics.
#'
#' @inheritParams calc_annual_stats
#' @param normal_percentiles Numeric vector of two values, lower and upper percentiles, respectively indicating the limits of the
#' normal range. Default \code{c(25,75)}.
#'
#' @return A tibble data frame with the following columns:
#' \item{Year}{calendar or water year selected}
#' \item{Days_Below_Normal}{number of days per year below the daily normal (default 25th percentile)}
#' \item{Days_Above_Normal}{number of days per year above the daily normal (default 75th percentile)}
#' \item{Days_Outside_Normal}{number of days per year below and above the daily normal (default 25/75th percentile)}
#' Transposing data creates a column of "Statistics" and subsequent columns for each year selected.
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Calculate statistics with default limits of normal (25 and 75th percentiles)
#' calc_annual_outside_normal(station_number = "08NM116")
#'
#' # Calculate statistics with custom limits of normal
#' calc_annual_outside_normal(station_number = "08NM116",
#' normal_percentiles = c(10,90))
#'
#' }
#' @export
calc_annual_outside_normal <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
normal_percentiles = c(25, 75),
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
transpose = FALSE){
message("Note: this function has been superseded by the 'calc_annual_normal_days()' function. ",
"This function is still supported but no longer receives active development, ",
"as better solutions now exist.")
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
rolling_days_checks(roll_days, roll_align, multiple = FALSE)
water_year_checks(water_year_start)
years_checks(start_year, end_year, exclude_years)
months_checks(months)
logical_arg_check(transpose)
numeric_range_checks(normal_percentiles)
sort(normal_percentiles)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data,
station_number = station_number)
# Save the original columns (to check for STATION_NUMBER col at end) and ungroup if necessary
orig_cols <- names(flow_data)
flow_data <- dplyr::ungroup(flow_data)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## PREPARE FLOW DATA
## -----------------
# Fill missing dates, add date variables, and add WaterYear
flow_data <- analysis_prep(data = flow_data,
water_year_start = water_year_start)
# Add rolling means to end of dataframe
flow_data <- add_rolling_means(data = flow_data, roll_days = roll_days, roll_align = roll_align)
colnames(flow_data)[ncol(flow_data)] <- "RollingValue"
# Filter the data for the start and end years
flow_data <- dplyr::filter(flow_data, WaterYear >= start_year & WaterYear <= end_year)
flow_data <- dplyr::mutate(flow_data, Value = replace(Value, WaterYear %in% exclude_years, NA))
flow_data <- dplyr::filter(flow_data, Month %in% months)
# Stop if all data is NA
no_values_error(flow_data$RollingValue)
# Determine years with complete data and filter for only those years
comp_years <- dplyr::summarise(dplyr::group_by(flow_data, STATION_NUMBER, WaterYear),
complete_yr = ifelse(sum(!is.na(RollingValue)) == length(WaterYear), TRUE, FALSE))
flow_data <- merge(flow_data, comp_years, by = c("STATION_NUMBER", "WaterYear"))
flow_data <- dplyr::mutate(flow_data, Value = replace(Value, complete_yr == "FALSE", NA))
# Stop if all data is NA
no_values_error(flow_data$RollingValue)
## --------------------
#Compute the normal limits for each day of the year and add each to the flow_data
daily_normals <- dplyr::summarise(dplyr::group_by(flow_data, STATION_NUMBER, DayofYear),
LOWER = stats::quantile(RollingValue, prob = normal_percentiles[1] / 100, na.rm = TRUE),
UPPER = stats::quantile(RollingValue, prob = normal_percentiles[2] / 100, na.rm = TRUE))
daily_normals <- dplyr::ungroup(daily_normals)
flow_data_temp <- merge(flow_data, daily_normals, by = c("STATION_NUMBER", "DayofYear"))
#Compute the number of days above and below normal for each year
normals_stats <- dplyr::summarise(dplyr::group_by(flow_data_temp, STATION_NUMBER, WaterYear),
Days_Below_Normal = sum(Value < LOWER, na.rm = FALSE),
Days_Above_Normal = sum(Value > UPPER, na.rm = FALSE),
Days_Outside_Normal = Days_Below_Normal + Days_Above_Normal)
normals_stats <- dplyr::ungroup(normals_stats)
normals_stats <- dplyr::rename(normals_stats, Year = WaterYear)
#Remove any excluded
normals_stats[normals_stats$Year %in% exclude_years, -(1:2)] <- NA
# Transpose data if selected
if(transpose){
# Get list of columns to order the Statistic column after transposing
stat_levels <- names(normals_stats[-(1:2)])
normals_stats <- tidyr::gather(normals_stats, Statistic, Value, -Year, -STATION_NUMBER)
normals_stats <- tidyr::spread(normals_stats, Year, Value)
# Order the columns
normals_stats$Statistic <- factor(normals_stats$Statistic, levels = stat_levels)
normals_stats <- dplyr::arrange(normals_stats, STATION_NUMBER, Statistic)
}
# Give warning if any NA values
if (!transpose) {
missing_test <- dplyr::filter(normals_stats, !(Year %in% exclude_years))
missing_values_warning(missing_test[, 3:ncol(missing_test)])
} else {
missing_test <- dplyr::select(normals_stats, -dplyr::one_of(as.character(exclude_years)))
missing_values_warning(missing_test[, 3:ncol(missing_test)])
}
# Recheck if station_number/grouping was in original flow_data and rename or remove as necessary
if(as.character(substitute(groups)) %in% orig_cols) {
names(normals_stats)[names(normals_stats) == "STATION_NUMBER"] <- as.character(substitute(groups))
} else {
normals_stats <- dplyr::select(normals_stats, -STATION_NUMBER)
}
dplyr::as_tibble(normals_stats)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.