# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Calculate long-term percentiles
#'
#' @description Calculates the long-term percentiles from a daily streamflow data set. Calculates statistics from all values,
#' unless specified. Returns a tibble with statistics.
#'
#' @inheritParams calc_daily_stats
#' @inheritParams calc_monthly_stats
#' @param percentiles Numeric vector of percentiles (ex. \code{c(5,10,25,75)}) to calculate. Required.
#'
#' @return A tibble data frame of a long-term percentile of selected years and months.
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Calculate the 20th percentile flow value from a flow record
#' calc_longterm_percentile(station_number = "08NM116",
#' percentile = 20)
#'
#' # Calculate the 90th percentile flow value with custom years
#' calc_longterm_percentile(station_number = "08NM116",
#' start_year = 1980,
#' end_year = 2010,
#' percentile = 90)
#'
#' }
#' @export
calc_longterm_percentile <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
percentiles,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
complete_years = FALSE,
months = 1:12,
transpose = FALSE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(percentiles)) {
percentiles <- NA
}
rolling_days_checks(roll_days, roll_align)
water_year_checks(water_year_start)
years_checks(start_year, end_year, exclude_years)
logical_arg_check(complete_years)
logical_arg_check(transpose)
if (all(is.na(percentiles))) stop("percentiles argument is required.", call. = FALSE)
numeric_range_checks(percentiles)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data,
station_number = station_number)
# Save the original columns (to check for STATION_NUMBER col at end) and ungroup if necessary
orig_cols <- names(flow_data)
flow_data <- dplyr::ungroup(flow_data)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## PREPARE FLOW DATA
## -----------------
# Fill missing dates, add date variables, and add WaterYear
flow_data <- analysis_prep(data = flow_data,
water_year_start = water_year_start)
# Add rolling means to end of dataframe
flow_data <- add_rolling_means(data = flow_data, roll_days = roll_days, roll_align = roll_align)
colnames(flow_data)[ncol(flow_data)] <- "RollingValue"
# Filter for the selected year
flow_data <- dplyr::filter(flow_data, WaterYear >= start_year & WaterYear <= end_year)
flow_data <- dplyr::filter(flow_data, !(WaterYear %in% exclude_years))
flow_data <- dplyr::filter(flow_data, Month %in% months)
# Stop if all data is NA
no_values_error(flow_data$RollingValue)
# Remove incomplete years if selected
flow_data <- filter_complete_yrs(complete_years = complete_years,
flow_data)
# Stop if all data is NA
no_values_error(flow_data$RollingValue)
# Give warning if any NA values
missing_values_warning_noNA(flow_data$RollingValue)
#--------------------------------------------------------------
# Complete the analysis
ptile_stats <- dplyr::summarize(dplyr::group_by(flow_data, STATION_NUMBER))
# Calculate the long-term percentile
for(ptile in unique(percentiles)) {
ptile_statss <- dplyr::summarize(dplyr::group_by(flow_data, STATION_NUMBER),
Percentile = stats::quantile(RollingValue, ptile / 100, na.rm = TRUE))
names(ptile_statss)[names(ptile_statss) == "Percentile"] <- paste0("P", ptile)
# Merge with ptile_statss
ptile_stats <- merge(ptile_stats, ptile_statss, by = c("STATION_NUMBER"))
}
# If transpose if selected, switch columns and rows
if (transpose) {
# Get list of columns to order the Statistic column after transposing
stat_levels <- names(ptile_stats[-(1)])
# Transpose the columns for rows
ptile_stats <- tidyr::gather(ptile_stats, Statistic, Value, -STATION_NUMBER)
# Order the columns
ptile_stats$Statistic <- factor(ptile_stats$Statistic, levels = stat_levels)
ptile_stats <- dplyr::arrange(ptile_stats, STATION_NUMBER, Statistic)
}
# Recheck if station_number was in original flow_data and rename or remove as necessary
if(as.character(substitute(groups)) %in% orig_cols) {
names(ptile_stats)[names(ptile_stats) == "STATION_NUMBER"] <- as.character(substitute(groups))
} else {
ptile_stats <- dplyr::select(ptile_stats, -STATION_NUMBER)
}
# If just one value is in the table, return is as a value, otherwise return it as a tibble
if(nrow(ptile_stats) == 1 & ncol(ptile_stats) == 1){
dplyr::pull(dplyr::as_tibble(ptile_stats)[1,1])
} else {
dplyr::as_tibble(ptile_stats)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.