# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot annual summary statistics (as ribbons)
#'
#' @description Plots means, medians, maximums, minimums, and percentiles as ribbons for each year from all years of a daily streamflow
#' data set. Calculates statistics from all values, unless specified. Data calculated using \code{calc_annual_stats()} function.
#' Returns a list of plots.
#'
#' @inheritParams plot_annual_stats
#' @inheritParams plot_daily_stats
#' @param log_discharge Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default \code{FALSE}.
#' @param log_ticks Logical value to indicate plotting logarithmic scale ticks when \code{log_discharge = TRUE}. Ticks will not
#' appear when \code{log_discharge = FALSE}. Default to \code{TRUE} when \code{log_discharge = TRUE}.
#' @param include_title Logical value to indicate adding the group/station number to the plot, if provided. Default \code{FALSE}.
#'
#'
#' @return A list of ggplot2 objects for with the following plots (percentile plots optional) for each station provided:
#' \item{Annual_Stats}{a plot that contains annual statistics}
#' Default plots on each object:
#' \item{Mean}{annual mean}
#' \item{Median}{annual median}
#' \item{25-75 Percentiles}{a ribbon showing the range of data between the annual 25th and 75th percentiles}
#' \item{5-95 Percentiles}{a ribbon showing the range of data between the annual 5th and 95th percentiles}
#' \item{Minimum-Maximum}{a ribbon showing the range of data between the annual minimum and maximums}
#'
#' @seealso \code{\link{calc_annual_stats}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot annual statistics using a data frame and data argument with defaults
#' flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
#' plot_annual_stats2(data = flow_data)
#'
#' # Plot annual statistics using station_number argument with defaults
#' plot_annual_stats2(station_number = "08NM116")
#'
#' # Plot annual statistics regardless if there is missing data for a given year
#' plot_annual_stats2(station_number = "08NM116",
#' ignore_missing = TRUE)
#'
#' # Plot annual statistics for water years starting in October
#' plot_annual_stats2(station_number = "08NM116",
#' water_year_start = 10)
#'
#' }
#' @export
plot_annual_stats2 <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
complete_years = FALSE,
ignore_missing = FALSE,
allowed_missing = ifelse(ignore_missing,100,0),
plot_extremes = TRUE,
plot_inner_percentiles = TRUE,
plot_outer_percentiles = TRUE,
inner_percentiles = c(25,75),
outer_percentiles = c(5,95),
log_discharge = TRUE,
log_ticks = ifelse(log_discharge, TRUE, FALSE),
include_title = FALSE){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
logical_arg_check(log_discharge)
log_ticks_checks(log_ticks, log_discharge)
logical_arg_check(include_title)
ptile_ribbons_checks(inner_percentiles, outer_percentiles)
logical_arg_check(plot_extremes)
logical_arg_check(plot_inner_percentiles)
logical_arg_check(plot_outer_percentiles)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## CALC STATS
## ----------
annual_stats_plot <- calc_annual_stats(data = flow_data,
percentiles = c(inner_percentiles, outer_percentiles),
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months,
complete_years = complete_years,
ignore_missing = ignore_missing,
allowed_missing = allowed_missing)
# Remove all leading NA years
annual_stats_plot <- dplyr::filter(dplyr::group_by(annual_stats_plot, STATION_NUMBER),
Year >= Year[min(which(!is.na(.data[[names(annual_stats_plot)[3]]])))])
## PLOT STATS
## ----------
# Create axis label based on input columns
y_axis_title <- ifelse(as.character(substitute(values)) == "Volume_m3", "Volume (cubic metres)", #expression(Volume~(m^3))
ifelse(as.character(substitute(values)) == "Yield_mm", "Yield (mm)",
"Discharge (cms)")) #expression(Discharge~(m^3/s))
fill_manual_list <- c()
if (plot_extremes) {
fill_manual_list <- c(fill_manual_list, "lightblue2")
names(fill_manual_list) <- c(names(fill_manual_list), "Minimum-Maximum")
}
if (is.numeric(outer_percentiles)) {
fill_manual_list <- c(fill_manual_list, "lightblue3")
outer_name <- paste0(min(outer_percentiles),"-",max(outer_percentiles), " Percentiles")
names(fill_manual_list) <- c(names(fill_manual_list)[1:(length(fill_manual_list)-1)], outer_name)
}
if (is.numeric(inner_percentiles)) {
fill_manual_list <- c(fill_manual_list, "lightblue4")
inner_name <- paste0(min(inner_percentiles),"-",max(inner_percentiles), " Percentiles")
names(fill_manual_list) <- c(names(fill_manual_list)[1:(length(fill_manual_list)-1)], inner_name)
}
colour_manual_list <- c("Mean" = "paleturquoise", "Median" = "dodgerblue4")
colour_manual_labels <- c("Mean", "Median")
# Create plots for each STATION_NUMBER in a tibble (see: http://www.brodrigues.co/blog/2017-03-29-make-ggplot2-purrr/)
tidy_plots <- dplyr::group_by(annual_stats_plot, STATION_NUMBER)
tidy_plots <- tidyr::nest(tidy_plots)
tidy_plots <- dplyr::mutate(
tidy_plots,
plot = purrr::map2(
data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Year)) +
{if(plot_extremes) ggplot2::geom_ribbon(ggplot2::aes(ymin = Minimum, ymax = Maximum, fill = "Minimum-Maximum"), na.rm = FALSE)} +
{if(is.numeric(outer_percentiles) & plot_outer_percentiles)
ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0("P",min(outer_percentiles)),
ymax = paste0("P",max(outer_percentiles)),
fill = paste0("'",outer_name,"'")), na.rm = FALSE)} +
{if(is.numeric(inner_percentiles) & plot_inner_percentiles)
ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0("P",min(inner_percentiles)),
ymax = paste0("P",max(inner_percentiles)),
fill = paste0("'",inner_name,"'")), na.rm = FALSE)} +
ggplot2::geom_line(ggplot2::aes(y = Median, colour = "Median"), size = 1, na.rm = TRUE) +
ggplot2::geom_line(ggplot2::aes(y = Mean, colour = "Mean"), size = 1, na.rm = TRUE) +
ggplot2::scale_x_continuous(expand = c(0,0))+
{if(!log_discharge) ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0.02, 0.02)),
breaks = scales::pretty_breaks(n = 8),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))} +
{if(log_discharge) ggplot2::scale_y_log10(expand = ggplot2::expansion(mult = c(0.02, 0.02)),
breaks = scales::log_breaks(n = 8, base = 10),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))} +
{if(log_discharge) ggplot2::annotation_logticks(base= 10, "left", colour = "grey25", size = 0.3,
short = ggplot2::unit(.07, "cm"), mid = ggplot2::unit(.15, "cm"),
long = ggplot2::unit(.2, "cm")) }+
ggplot2::xlab(ifelse(water_year_start ==1, "Year", "Water Year"))+
ggplot2::ylab("Discharge (cms)")+
ggplot2::theme_bw()+
ggplot2::labs(color = 'Annual Statistics') +
{if (include_title & .y != "XXXXXXX") ggplot2::labs(color = paste0(.y,'\n \nAnnual Statistics')) } +
ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "grey25"),
axis.title = ggplot2::element_text(size = 12, colour = "grey25"),
axis.ticks = ggplot2::element_line(size = .1, colour = "grey25"),
axis.ticks.length = ggplot2::unit(0.05, "cm"),
axis.title.y = ggplot2::element_text(margin = ggplot2::margin(0,0,0,0)),
panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_line(size = .1),
legend.text = ggplot2::element_text(size = 9, colour = "grey25"),
legend.box = "vertical",
legend.justification = "right",
legend.key.size = ggplot2::unit(0.4, "cm"),
legend.spacing = ggplot2::unit(-0.4, "cm"),
legend.background = ggplot2::element_blank()) +
ggplot2::guides(colour = ggplot2::guide_legend(order = 1), fill = ggplot2::guide_legend(order = 2, title = NULL)) +
ggplot2::scale_fill_manual(values = fill_manual_list) +
ggplot2::scale_color_manual(values = colour_manual_list, labels = colour_manual_labels)
))
# Create a list of named plots extracted from the tibble
plots <- tidy_plots$plot
if (nrow(tidy_plots) == 1) {
names(plots) <- "Annual_Statistics"
} else {
names(plots) <- paste0(tidy_plots$STATION_NUMBER, "_Annual_Statistics")
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.