# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot cumulative daily flow statistics
#'
#' @description Plot the daily cumulative mean, median, maximum, minimum, and 5, 25, 75, 95th percentiles for each day of the year
#' from a daily streamflow data set. Calculates statistics from all values from complete, unless specified.
#' Data calculated using \code{calc_daily_cumulative_stats()} function. Can plot individual years for comparison using the
#' add_year argument. Defaults to volumetric cumulative flows, can use \code{use_yield} and \code{basin_area} to convert to
#' water yield. Returns a list of plots.
#'
#' @inheritParams calc_daily_cumulative_stats
#' @inheritParams plot_daily_stats
#'
#' @return A list of ggplot2 objects with the following for each station provided:
#' \item{Daily_Cumulative_Stats}{a plot that contains daily cumulative flow statistics}
#' Default plots on each object:
#' \item{Mean}{daily cumulative mean}
#' \item{Median}{daily cumulative median}
#' \item{Min-5 Percentile Range}{a ribbon showing the range of data between the daily cumulative minimum and 5th percentile}
#' \item{5-25 Percentiles Range}{a ribbon showing the range of data between the daily cumulative 5th and 25th percentiles}
#' \item{25-75 Percentiles Range}{a ribbon showing the range of data between the daily cumulative 25th and 75th percentiles}
#' \item{75-95 Percentiles Range}{a ribbon showing the range of data between the daily cumulative 75th and 95th percentiles}
#' \item{95 Percentile-Max Range}{a ribbon showing the range of data between the daily cumulative 95th percentile and the maximum}
#' \item{'Year' Flows}{(optional) the daily cumulative flows for the designated year}
#'
#' @seealso \code{\link{calc_daily_cumulative_stats}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot annual daily yield statistics with default HYDAT basin area
#' plot_daily_cumulative_stats(station_number = "08NM116",
#' use_yield = TRUE)
#'
#' # Plot annual daily yield statistics with custom basin area
#' plot_daily_cumulative_stats(station_number = "08NM116",
#' use_yield = TRUE,
#' basin_area = 800)
#'
#' }
#' @export
plot_daily_cumulative_stats <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
use_yield = FALSE,
basin_area,
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
log_discharge = FALSE,
log_ticks = ifelse(log_discharge, TRUE, FALSE),
include_title = FALSE,
add_year){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(add_year)) {
add_year <- NULL
}
if (missing(basin_area)) {
basin_area <- NA
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (missing(exclude_years)) {
exclude_years <- NULL
}
logical_arg_check(log_discharge)
log_ticks_checks(log_ticks, log_discharge)
add_year_checks(add_year)
logical_arg_check(include_title)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
# Create origin date to apply to flow_data and Q_daily later on
origin_date <- get_origin_date(water_year_start)
## CALC STATS
## ----------
daily_stats <- calc_daily_cumulative_stats(data = flow_data,
percentiles = c(5,25,75,95),
use_yield = use_yield,
basin_area = basin_area,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
exclude_years = exclude_years,
months = months)
daily_stats <- dplyr::mutate(daily_stats, Date = as.Date(DayofYear, origin = origin_date))
daily_stats <- dplyr::mutate(daily_stats, AnalysisDate = Date)
## ADD YEAR IF SELECTED
## --------------------
if(!is.null(add_year)){
year_data <- fill_missing_dates(data = flow_data, water_year_start = water_year_start)
year_data <- add_date_variables(data = year_data, water_year_start = water_year_start)
# Add cumulative flows
if (use_yield){
year_data <- add_cumulative_yield(data = year_data, water_year_start = water_year_start, basin_area = basin_area,
months = months)
year_data$Cumul_Flow <- year_data$Cumul_Yield_mm
} else {
year_data <- add_cumulative_volume(data = year_data, water_year_start = water_year_start,
months = months)
year_data$Cumul_Flow <- year_data$Cumul_Volume_m3
}
year_data <- dplyr::mutate(year_data, AnalysisDate = as.Date(DayofYear, origin = origin_date))
year_data <- dplyr::filter(year_data, WaterYear >= start_year & WaterYear <= end_year)
year_data <- dplyr::filter(year_data, !(WaterYear %in% exclude_years))
year_data <- dplyr::filter(year_data, DayofYear < 366)
year_data <- dplyr::filter(year_data, WaterYear == add_year)
year_data <- dplyr::select(year_data, STATION_NUMBER, AnalysisDate, Cumul_Flow)
# Add the daily data from add_year to the daily stats
daily_stats <- dplyr::left_join(daily_stats, year_data, by = c("STATION_NUMBER", "AnalysisDate"))
# Warning if all daily values are NA from the add_year
for (stn in unique(daily_stats$STATION_NUMBER)) {
year_test <- dplyr::filter(daily_stats, STATION_NUMBER == stn)
if(all(is.na(daily_stats$Cumul_Flow)))
warning("Daily data does not exist for the year listed in add_year and was not plotted.", call. = FALSE)
}
}
daily_stats[is.na(daily_stats)] <- 0
## PLOT STATS
## ----------
# Create the daily stats plots
daily_plots <- dplyr::group_by(daily_stats, STATION_NUMBER)
daily_plots <- tidyr::nest(daily_plots)
daily_plots <- dplyr::mutate(daily_plots,
plot = purrr::map2(data, STATION_NUMBER,
~suppressMessages(
suppressWarnings(
ggplot2::ggplot(., ggplot2::aes(x = AnalysisDate)) +
ggplot2::geom_ribbon(ggplot2::aes(ymin = Minimum, ymax = P5, fill = "Min-5th Percentile")) +
ggplot2::geom_ribbon(ggplot2::aes(ymin = P5, ymax = P25, fill = "5th-25th Percentile")) +
ggplot2::geom_ribbon(ggplot2::aes(ymin = P25, ymax = P75, fill = "25th-75th Percentile")) +
ggplot2::geom_ribbon(ggplot2::aes(ymin = P75, ymax = P95, fill = "75th-95th Percentile")) +
ggplot2::geom_ribbon(ggplot2::aes(ymin = P95, ymax = Maximum, fill = "95th Percentile-Max")) +
ggplot2::geom_line(ggplot2::aes(y = Median, colour = "Median"), size = .7) +
ggplot2::geom_line(ggplot2::aes(y = Mean, colour = "Mean"), size = .7) +
ggplot2::scale_fill_manual(values = c("Min-5th Percentile" = "orange" , "5th-25th Percentile" = "yellow",
"25th-75th Percentile" = "skyblue1", "75th-95th Percentile" = "dodgerblue2",
"95th Percentile-Max" = "royalblue4"),
breaks = c("95th Percentile-Max", "75th-95th Percentile", "25th-75th Percentile",
"5th-25th Percentile", "Min-5th Percentile")) +
ggplot2::scale_color_manual(values = c("Median" = "purple3", "Mean" = "springgreen4")) +
{if (!log_discharge) ggplot2::scale_y_continuous(expand = c(0, 0), breaks = scales::pretty_breaks(n = 7),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))}+
{if (log_discharge) ggplot2::scale_y_log10(expand = c(0, 0), breaks = scales::log_breaks(n = 8, base = 10) ,
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1)))}+
{if (log_discharge & log_ticks) ggplot2::annotation_logticks(base= 10, "left", colour = "grey25", size = 0.3,
short = ggplot2::unit(.07, "cm"), mid = ggplot2::unit(.15, "cm"),
long = ggplot2::unit(.2, "cm"))} +
ggplot2::scale_x_date(date_labels = "%b", date_breaks = "1 month",
limits = as.Date(c(NA, as.character(max(daily_stats$AnalysisDate)))), expand=c(0, 0)) +
ggplot2::xlab("Day of Year")+
{if (!use_yield) ggplot2::ylab("Cumulative Volume (cubic metres)")} +
{if (use_yield) ggplot2::ylab("Cumulative Yield (mm)")} +
ggplot2::theme_bw() +
ggplot2::labs(color = 'Daily Statistics') +
{if (include_title & .y != "XXXXXXX") ggplot2::labs(color = paste0(.y,'\n \nDaily Statistics')) } +
ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "grey25"),
axis.title = ggplot2::element_text(size = 12, colour = "grey25"),
axis.title.y = ggplot2::element_text(margin = ggplot2::margin(0,0,0,0)),
axis.ticks = ggplot2::element_line(size = .1, colour = "grey25"),
axis.ticks.length = ggplot2::unit(0.05, "cm"),
panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major = ggplot2::element_line(size = .1),
panel.background = ggplot2::element_rect(fill = "grey94"),
legend.text = ggplot2::element_text(size = 9, colour = "grey25"),
legend.box = "vertical",
legend.justification = "right",
legend.key.size = ggplot2::unit(0.4, "cm"),
legend.spacing = ggplot2::unit(-0.4, "cm"),
legend.background = ggplot2::element_blank()) +
ggplot2::guides(colour = ggplot2::guide_legend(order = 1), fill = ggplot2::guide_legend(order = 2, title = NULL)) +
{if (is.numeric(add_year)) ggplot2::geom_line(ggplot2::aes(y = Cumul_Flow, colour = "yr.colour"), size = 0.7) } +
{if (is.numeric(add_year)) ggplot2::scale_color_manual(values = c("Mean" = "paleturquoise", "Median" = "dodgerblue4", "yr.colour" = "red"),
labels = c("Mean", "Median", paste0(add_year, " Flows"))) }
))))
# Create a list of named plots extracted from the tibble
plots <- daily_plots$plot
if (nrow(daily_plots) == 1) {
names(plots) <- paste0(ifelse(use_yield, "Daily_Cumulative_Yield_Stats", "Daily_Cumulative_Volumetric_Stats"))
} else {
names(plots) <- paste0(daily_plots$STATION_NUMBER, ifelse(use_yield, "_Daily_Cumulative_Yield_Stats", "_Daily_Cumulative_Volumetric_Stats"))
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.