# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Plot annual summary statistics for data screening
#'
#' @description Plots the mean, median, maximum, minimum, standard deviation of annual flows and indicates data availability.
#' Calculates statistics from all values, unless specified. Data calculated using \code{screen_flow_data()} function.
#' Returns a list of plots.
#'
#' @inheritParams screen_flow_data
#' @inheritParams plot_annual_stats
#' @param include_stats Vector of one or all of \code{c("Mean", "Median", "Minimum", "Maximum", "Standard Deviation")} to list
#' annual summary statistics to plot for screening. Default all.
#' @param plot_availability Logical value specifying whether to indicate if years contain complete data or missing values.
#' Default \code{TRUE}. Use \code{FALSE} for original fasstr version.
#'
#' @return A list of ggplot2 objects with the following for each station provided:
#' \item{Data_Screening}{a plot that contains annual summary statistics for screening}
#' Default plots on each object:
#' \item{Minimum}{annual minimum of all daily flows for a given year}
#' \item{Maximum}{annual maximum of all daily flows for a given year}
#' \item{Mean}{annual mean of all daily flows for a given year}
#' \item{StandardDeviation}{annual 1 standard deviation of all daily flows for a given year}
#'
#' @seealso \code{\link{screen_flow_data}}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Plot screening statistics using a data frame and data argument with defaults
#' flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
#' plot_data_screening(data = flow_data)
#'
#' # Plot screening statistics using station_number argument with defaults
#' plot_data_screening(station_number = "08NM116")
#'
#' # Plot screening statistics for water years starting in October
#' plot_data_screening(station_number = "08NM116",
#' water_year_start = 10)
#'
#' # Plot screening statistics for 7-day flows for July-September months only
#' plot_data_screening(station_number = "08NM116",
#' roll_days = 7,
#' months = 7:9)
#'
#' }
#' @export
plot_data_screening <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
months = 1:12,
start_year,
end_year,
include_title = FALSE,
plot_availability = TRUE,
include_stats = c("Mean", "Median", "Minimum", "Maximum", "Standard Deviation")){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
if (missing(start_year)) {
start_year <- 0
}
if (missing(end_year)) {
end_year <- 9999
}
if (length(plot_availability) > 1) stop("Only one plot_availability logical value can be listed.", call. = FALSE)
if (!is.logical(plot_availability)) stop("plot_availability argument must be logical (TRUE/FALSE).", call. = FALSE)
if (!any(c("Mean", "Median", "Minimum", "Maximum", "Standard Deviation") %in% include_stats))
stop("include_stats must be one or all of c('Mean', 'Median', 'Minimum', 'Maximum', 'Standard Deviation').", call. = FALSE)
include_stats <- include_stats[include_stats %in% c("Mean", "Median", "Minimum", "Maximum", "Standard Deviation")]
logical_arg_check(include_title)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided and import it
flow_data <- flowdata_import(data = data, station_number = station_number)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = TRUE)
## CALC STATS
## ----------
flow_summary <- screen_flow_data(data = flow_data,
roll_days = roll_days,
roll_align = roll_align,
water_year_start = water_year_start,
start_year = start_year,
end_year = end_year,
months = months,
include_symbols = FALSE)
flow_summary <- dplyr::select(flow_summary, STATION_NUMBER, Year, Minimum, Maximum, Mean, Median, "Standard Deviation" = StandardDeviation, n_missing_Q)
flow_summary <- dplyr::mutate(flow_summary, n_missing_Q = ifelse(n_missing_Q == 0, "Complete", "Missing Values"))
flow_summary <- tidyr::gather(flow_summary, Statistic, Value, 3:7)
flow_summary <- dplyr::filter(flow_summary, Statistic %in% include_stats)
## PLOT STATS
## ----------
# Create axis label based on input columns
y_axis_title <- ifelse(as.character(substitute(values)) == "Volume_m3", "Volume (cubic metres)", #expression(Volume~(m^3))
ifelse(as.character(substitute(values)) == "Yield_mm", "Yield (mm)",
"Discharge (cms)")) #expression(Discharge~(m^3/s))
# Plot
sum_plots <- dplyr::group_by(flow_summary, STATION_NUMBER)
sum_plots <- tidyr::nest(sum_plots)
sum_plots <- dplyr::mutate(sum_plots,
plot = purrr::map2(data, STATION_NUMBER,
~ggplot2::ggplot(data = ., ggplot2::aes(x = Year, y = Value)) +
ggplot2::geom_line(colour = "dodgerblue4", na.rm = TRUE) +
{if (!plot_availability) ggplot2::geom_point(colour = "firebrick3", na.rm = TRUE, size = 2) }+
{if (plot_availability) ggplot2::geom_point(ggplot2::aes(shape = n_missing_Q), colour = "firebrick3", na.rm = TRUE, size =2) }+
ggplot2::facet_wrap(~Statistic, ncol = 2, scales = "free_y", strip.position = "top") +
ggplot2::scale_x_continuous(breaks = scales::pretty_breaks(n = 8))+
{if(length(unique(flow_summary$Year)) < 5) ggplot2::scale_x_continuous(breaks = unique(flow_summary$Year))}+
ggplot2::scale_y_continuous(breaks = scales::pretty_breaks(n = 6),
labels = scales::label_number(scale_cut = append(scales::cut_short_scale(),1,1))) +
{if (plot_availability) ggplot2::scale_shape_manual(values = c(19,21),
labels = c("Complete Data", "Missing Values"),
name = "Data Availability") } +
ggplot2::expand_limits(y = 0) +
ggplot2::ylab(y_axis_title) +
ggplot2::xlab(ifelse(water_year_start ==1, "Year", "Water Year"))+
ggplot2::theme_bw() +
{if (include_title & .y != "XXXXXXX") ggplot2::ggtitle(paste(.y)) } +
ggplot2::theme(panel.border = ggplot2::element_rect(colour = "black", fill = NA, size = 1),
panel.grid = ggplot2::element_line(size = .2),
axis.title = ggplot2::element_text(size = 12),
axis.text = ggplot2::element_text(size = 10),
plot.title = ggplot2::element_text(hjust = 1, size = 9, colour = "grey25"),
strip.background = ggplot2::element_blank(),
strip.text = ggplot2::element_text(hjust = 0, face = "bold", size = 10))
))
# Create a list of named plots extracted from the tibble
plots <- sum_plots$plot
if (nrow(sum_plots) == 1) {
names(plots) <- "Data_Screening"
} else {
names(plots) <- paste0(sum_plots$STATION_NUMBER, "_Data_Screening")
}
plots
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.