Description Usage Arguments Value Examples
View source: R/StatComp21075.R
This code estimates coefficient for the PACS procedure.
1 |
y |
centered vector of response |
X |
scaled design matrix |
lambda |
non‐negative tuning parameter |
betawt |
adaptive weights, usually OLS/ridge coefficient estimates |
type |
1 for Adaptive PACS 2 for Adaptive Correlated PACS 3 for Threshold with Adaptive PACS 4 for Threshold with Adaptive Correlated PACS |
rr |
correlation for Threshold PACS approaches, a value between 0 and 1(needed for type=3 and type=4) |
eps |
criteria for convergence |
estimated PACS coefficients
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Not run:
library(MASS)
n<-50
c1<-c(1,0.7,0.7,rep(0,5))
c2<-c(0.7,1,0.7,rep(0,5))
c3<-c(0.7,0.7,1,rep(0,5))
c4<-c(rep(0,3),1,rep(0,4))
c5<-c(rep(0,4),1,rep(0,3))
c6<-c(rep(0,5),1,rep(0,2))
c7<-c(rep(0,6),1,0)
c8<-c(rep(0,7),1)
s<-rbind(c1,c2,c3,c4,c5,c6,c7,c8)
x<-mvrnorm(n,rep(1,8),s)
beta<-c(2,2,2,rep(0,5))
eps<-rnorm(n)
y<-x%*%beta+eps
betawt<-summary(lm(y~x))$coefficients[2:9]
PACS(y,x,lambda=1,betawt=betawt,type=1,rr=0,eps=10^-5)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.