## ---- echo=FALSE, message=FALSE, warning=FALSE---------------------------
par( mgp=c(1.8,0.8,0), mar=c(2.5, 2.5,2,0.1) )
knitr::opts_chunk$set(fig.width = 8)
## ---- message=FALSE, warning=FALSE---------------------------------------
library( mvtnorm )
library( tidyverse )
library( hettx )
data( ToyData )
## ---- echo=TRUE----------------------------------------------------------
data( ToyData )
head( ToyData )
td = gather( ToyData, x1, x2, x3, x4, key="X", value="value" )
td = gather( td, Y, tau, key="outcome", value="value2" )
ggplot( td, aes( x=value, y=value2, col=as.factor(Z) ) ) +
facet_grid( outcome ~ X, scales="free" ) +
geom_point( alpha=0.5, size=0.5) +
geom_smooth( method="loess", se=FALSE ) +
labs( x="Covariates", y="" )
## ---- echo=TRUE----------------------------------------------------------
mean( ToyData$tau )
## ---- echo=TRUE----------------------------------------------------------
par( mfrow=c(1,2) )
ll0 = lm( Y ~ Z, data=ToyData )
plot( ecdf( resid(ll0)[ToyData$Z==1] ), pch=".", main="Marginal CDFs of \n treatment and control")
plot( ecdf( resid(ll0)[ToyData$Z==0] ), pch=".", col="red", add=TRUE )
ll1 = lm( Y ~ Z + x1 + x2 + x3 + x4, data=ToyData )
plot( ecdf( resid(ll1)[ToyData$Z==1] ), pch=".", main="Residual CDFs of \n treatment and control" )
plot( ecdf( resid(ll1)[ToyData$Z==0] ), pch=".", col="red", add=TRUE )
## ---- echo=TRUE----------------------------------------------------------
M0 <- lm( Y ~ Z * (x1+x2+x3), data=ToyData )
round( coef( M0 ), digits=1 )
## ---- echo=TRUE, results='asis'------------------------------------------
B <- 20
grid.size = 11
## ---- echo=TRUE----------------------------------------------------------
tst3c <- detect_idiosyncratic( Y ~ Z, data=ToyData,
interaction.formula = ~ x1 + x2,
control.formula = ~ x3 + x4,
B=B, test.stat="SKS.stat.int.cov",
verbose=FALSE )
summary( tst3c )
## ------------------------------------------------------------------------
get.p.value( tst1b )
## ----display, echo=TRUE--------------------------------------------------
tests = list( no_cov=tst1, useless_cov=tst1b, all_covariates=tst2,
non_tx_covariates_only=tst2b, het_beyond_x1 = tst3a1,
het_beyond_x1_with_x3_x4_cov=tst3a2, het_beyond_x1_with_all_cov=tst3a2,
het_beyond_x1_x2=tst3b,
het_beyond_x1_x2_with_cov=tst3c, het_beyond_all=tst3d )
agg.res = purrr::map( tests, get.p.value ) %>%
purrr::map( as.list )
agg.res = bind_rows( agg.res, .id = "test" )
agg.res
## ----cautionary_tale, echo=TRUE------------------------------------------
ll1 = lm( Y ~ Z + x1 + x2 + x3 + x4, data=ToyData )
print( summary( ll1 ) )
## ----cautionary_tale_2, echo=TRUE----------------------------------------
plot( ecdf( resid(ll1)[ToyData$Z==1] ), pch=".", main="Residual CDFs of treatment and control" )
plot( ecdf( resid(ll1)[ToyData$Z==0] ), pch=".", col="red", add=TRUE )
## ------------------------------------------------------------------------
variance.ratio.test( ToyData$Y, ToyData$Z )
## ------------------------------------------------------------------------
test.stat.info()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.