View source: R/stability.selection.R
stability.selection.top.var | R Documentation |
Compute Lustgarten's stability measure ASM (N) dependence for top-N variables N = 5,10,15,20,30,40,50,75,100
stability.selection.top.var(list.selected.var, list.index.cross)
list.selected.var |
A |
list.index.cross |
A |
Compute Lustgarten's stability measure ASM (N) dependence for top-N variables N = 5,10,15,20,30,40,50,75,100 for variables selected in cross-validation
A data.frame
with the result Lustgarten's stability measure ASM (N) dependence for top-N variables N = 5,10,15,20,30,40,50,75,100
## Not run:
class <- data$class
data$class <- NULL
list.index.cross <- cross.val(x = data,
y = decisions,
method = 'kfoldcv',
params.cv = list(niter = 10, k = 3))
list.selected.var <- feature.selection(x = data,
y = class,
method = 'fs.utest',
list.index.cross = indexes,
params = list(adjust = 'holm', alpha = 0.05))
result.stability <- stabilty.selection.top.var(list.selected.var, list.index.cross)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.